IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v185y2020i1d10.1007_s10957-020-01635-8.html
   My bibliography  Save this article

A General Iterative Procedure to Solve Generalized Equations with Differentiable Multifunction

Author

Listed:
  • Michaël Gaydu

    (Université Antilles)

  • Gilson N. Silva

    (Universidade Federal de Goiás)

Abstract

Taking advantage of recent developments in the theory of generalized differentiation of multifunctions, we present in a unified manner a general iterative procedure for solving generalized equations. This procedure is based on a certain type of approximation of functions called point-based approximation together with a linearization of the multifunctions. Our theorem encompasses the Newton method and extends in the same time, many methods of resolution of generalized equations that have been developed during the last two decades.

Suggested Citation

  • Michaël Gaydu & Gilson N. Silva, 2020. "A General Iterative Procedure to Solve Generalized Equations with Differentiable Multifunction," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 207-222, April.
  • Handle: RePEc:spr:joptap:v:185:y:2020:i:1:d:10.1007_s10957-020-01635-8
    DOI: 10.1007/s10957-020-01635-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01635-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01635-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Aragón Artacho & A. Belyakov & A. Dontchev & M. López, 2014. "Local convergence of quasi-Newton methods under metric regularity," Computational Optimization and Applications, Springer, vol. 58(1), pages 225-247, May.
    2. Michaël Gaydu & Michel Geoffroy & Yvesner Marcelin, 2016. "Prederivatives of convex set-valued maps and applications to set optimization problems," Journal of Global Optimization, Springer, vol. 64(1), pages 141-158, January.
    3. D. Azé & C. C. Chou, 1995. "On a Newton Type Iterative Method for Solving Inclusions," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 790-800, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaxi Wang & Wei Ouyang, 2022. "Newton’s Method for Solving Generalized Equations Without Lipschitz Condition," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 510-532, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    2. Jiaxi Wang & Wei Ouyang, 2022. "Newton’s Method for Solving Generalized Equations Without Lipschitz Condition," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 510-532, February.
    3. Wei Ouyang & Kui Mei, 2023. "A General Iterative Procedure for Solving Nonsmooth Constrained Generalized Equations," Mathematics, MDPI, vol. 11(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:185:y:2020:i:1:d:10.1007_s10957-020-01635-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.