IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v182y2019i1d10.1007_s10957-018-01456-w.html
   My bibliography  Save this article

Lipschitz Modulus of the Optimal Value in Linear Programming

Author

Listed:
  • María Jesús Gisbert

    (Miguel Hernández University of Elche)

  • María Josefa Cánovas

    (Miguel Hernández University of Elche)

  • Juan Parra

    (Miguel Hernández University of Elche)

  • Fco. Javier Toledo

    (Miguel Hernández University of Elche)

Abstract

The present paper is devoted to the computation of the Lipschitz modulus of the optimal value function restricted to its domain in linear programming under different types of perturbations. In the first stage, we study separately perturbations of the right-hand side of the constraints and perturbations of the coefficients of the objective function. Secondly, we deal with canonical perturbations, i.e., right-hand side perturbations together with linear perturbations of the objective. We advance that an exact formula for the Lipschitz modulus in the context of right-hand side perturbations is provided, and lower and upper estimates for the corresponding moduli are also established in the other two perturbation frameworks. In both cases, the corresponding upper estimates are shown to provide the exact moduli when the nominal (original) optimal set is bounded. A key strategy here consists in taking advantage of the background on calmness in linear programming and providing the aimed Lipschitz modulus through the computation of a uniform calmness constant.

Suggested Citation

  • María Jesús Gisbert & María Josefa Cánovas & Juan Parra & Fco. Javier Toledo, 2019. "Lipschitz Modulus of the Optimal Value in Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 133-152, July.
  • Handle: RePEc:spr:joptap:v:182:y:2019:i:1:d:10.1007_s10957-018-01456-w
    DOI: 10.1007/s10957-018-01456-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-01456-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-01456-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. I. Gass & Thomas L. Saaty, 1955. "Parametric Objective Function (Part 2)---Generalization," Operations Research, INFORMS, vol. 3(4), pages 395-401, November.
    2. Thomas Saaty & Saul Gass, 1954. "Parametric Objective Function (Part 1)," Operations Research, INFORMS, vol. 2(3), pages 316-319, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan Helfrich & Arne Herzel & Stefan Ruzika & Clemens Thielen, 2022. "An approximation algorithm for a general class of multi-parametric optimization problems," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1459-1494, October.
    2. Mauricio Diéguez & Jaime Bustos & Carlos Cares, 2020. "Mapping the variations for implementing information security controls to their operational research solutions," Information Systems and e-Business Management, Springer, vol. 18(2), pages 157-186, June.
    3. Walter Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    4. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    5. Weihua Su & Dongcai Zhang & Chonghui Zhang & Dalia Streimikiene, 2020. "Sustainability assessment of energy sector development in China and European Union," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1063-1076, September.
    6. José Niño-Mora, 2007. "A (2/3) n 3 Fast-Pivoting Algorithm for the Gittins Index and Optimal Stopping of a Markov Chain," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 596-606, November.
    7. Efstratios Pistikopoulos & Luis Dominguez & Christos Panos & Konstantinos Kouramas & Altannar Chinchuluun, 2012. "Theoretical and algorithmic advances in multi-parametric programming and control," Computational Management Science, Springer, vol. 9(2), pages 183-203, May.
    8. Aadhityaa Mohanavelu & Bankaru-Swamy Soundharajan & Ozgur Kisi, 2022. "Modeling Multi-objective Pareto-optimal Reservoir Operation Policies Using State-of-the-art Modeling Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3107-3128, July.
    9. Goberna, M.A. & Gomez, S. & Guerra, F. & Todorov, M.I., 2007. "Sensitivity analysis in linear semi-infinite programming: Perturbing cost and right-hand-side coefficients," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1069-1085, September.
    10. Mauricio Diéguez & Jaime Bustos & Carlos Cares, 0. "Mapping the variations for implementing information security controls to their operational research solutions," Information Systems and e-Business Management, Springer, vol. 0, pages 1-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:182:y:2019:i:1:d:10.1007_s10957-018-01456-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.