IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v180y2019i3d10.1007_s10957-018-1378-2.html
   My bibliography  Save this article

An Extension of Yuan’s Lemma to Fourth-Order Tensor System

Author

Listed:
  • Qingzhi Yang

    (Kashgar University
    Nankai University)

  • Yang Zhou

    (Nankai University)

  • Yuning Yang

    (Guangxi University)

Abstract

Yuan’s lemma is a basic proposition on homogeneous quadratic function systems. In this note, we extend Yuan’s lemma to the fourth-order tensor system. We first give generalized definition of positive semidefinite of fourth-order tensor, and based on it, an extension of Yuan’s lemma is proposed. As an application, we establish the strong duality result of a class of quadratic semidefinite programming problems using the extended Yuan’s lemma.

Suggested Citation

  • Qingzhi Yang & Yang Zhou & Yuning Yang, 2019. "An Extension of Yuan’s Lemma to Fourth-Order Tensor System," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 803-810, March.
  • Handle: RePEc:spr:joptap:v:180:y:2019:i:3:d:10.1007_s10957-018-1378-2
    DOI: 10.1007/s10957-018-1378-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1378-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1378-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shenglong Hu & Guoyin Li & Liqun Qi, 2016. "A Tensor Analogy of Yuan’s Theorem of the Alternative and Polynomial Optimization with Sign structure," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 446-474, February.
    2. B. T. Polyak, 1998. "Convexity of Quadratic Transformations and Its Use in Control and Optimization," Journal of Optimization Theory and Applications, Springer, vol. 99(3), pages 553-583, December.
    3. Sheng-Long Hu & Zheng-Hai Huang, 2012. "Theorems of the Alternative for Inequality Systems of Real Polynomials," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meijia Yang & Shu Wang & Yong Xia, 2022. "Toward Nonquadratic S-Lemma: New Theory and Application in Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 353-363, July.
    2. M. Ruiz Galán, 2017. "A theorem of the alternative with an arbitrary number of inequalities and quadratic programming," Journal of Global Optimization, Springer, vol. 69(2), pages 427-442, October.
    3. Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
    4. C. Durieu & É. Walter & B. Polyak, 2001. "Multi-Input Multi-Output Ellipsoidal State Bounding," Journal of Optimization Theory and Applications, Springer, vol. 111(2), pages 273-303, November.
    5. de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Discussion Paper 2006-85, Tilburg University, Center for Economic Research.
    6. Zhuoyi Xu & Linbin Li & Yong Xia, 2023. "A partial ellipsoidal approximation scheme for nonconvex homogeneous quadratic optimization with quadratic constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 93-109, August.
    7. J. B. Lasserre & J. B. Hiriart-Urruty, 2002. "Mathematical Properties of Optimization Problems Defined by Positively Homogeneous Functions," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 31-52, January.
    8. A. Baccari & B. Samet, 2009. "An Extension of Polyak’s Theorem in a Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 409-418, March.
    9. Muhammad Faisal Iqbal & Faizan Ahmed, 2022. "Approximation Hierarchies for the Copositive Tensor Cone and Their Application to the Polynomial Optimization over the Simplex," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
    10. Shenglong Hu & Guoyin Li & Liqun Qi, 2016. "A Tensor Analogy of Yuan’s Theorem of the Alternative and Polynomial Optimization with Sign structure," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 446-474, February.
    11. B. S. Mordukhovich & M. E. Sarabi, 2017. "Stability Analysis for Composite Optimization Problems and Parametric Variational Systems," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 554-577, February.
    12. T. D. Chuong & V. Jeyakumar & G. Li, 2019. "A new bounded degree hierarchy with SOCP relaxations for global polynomial optimization and conic convex semi-algebraic programs," Journal of Global Optimization, Springer, vol. 75(4), pages 885-919, December.
    13. Etienne Klerk, 2008. "The complexity of optimizing over a simplex, hypercube or sphere: a short survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 111-125, June.
    14. Huu-Quang Nguyen & Ruey-Lin Sheu, 2019. "Geometric properties for level sets of quadratic functions," Journal of Global Optimization, Springer, vol. 73(2), pages 349-369, February.
    15. Immanuel Bomze & Markus Gabl, 2021. "Interplay of non-convex quadratically constrained problems with adjustable robust optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 115-151, February.
    16. H. Tuy & H. Tuan, 2013. "Generalized S-Lemma and strong duality in nonconvex quadratic programming," Journal of Global Optimization, Springer, vol. 56(3), pages 1045-1072, July.
    17. de Klerk, E., 2008. "The complexity of optimizing over a simplex, hypercube or sphere : A short survey," Other publications TiSEM 485b6860-cf1d-4cad-97b8-2, Tilburg University, School of Economics and Management.
    18. Mengmeng Song & Yong Xia, 2023. "Calabi-Polyak convexity theorem, Yuan’s lemma and S-lemma: extensions and applications," Journal of Global Optimization, Springer, vol. 85(3), pages 743-756, March.
    19. Kürşad Derinkuyu & Mustafa Pınar, 2006. "On the S-procedure and Some Variants," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 55-77, August.
    20. Gabriel Haeser, 2017. "An Extension of Yuan’s Lemma and Its Applications in Optimization," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 641-649, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:180:y:2019:i:3:d:10.1007_s10957-018-1378-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.