IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v173y2017i3d10.1007_s10957-017-1112-5.html
   My bibliography  Save this article

A Proximal Point Analysis of the Preconditioned Alternating Direction Method of Multipliers

Author

Listed:
  • Kristian Bredies

    (University of Graz)

  • Hongpeng Sun

    (Renmin University of China)

Abstract

We study preconditioned algorithms of alternating direction method of multipliers type for nonsmooth optimization problems. The alternating direction method of multipliers is a popular first-order method for general constrained optimization problems. However, one of its drawbacks is the need to solve implicit subproblems. In various applications, these subproblems are either easily solvable or linear, but nevertheless challenging. We derive a preconditioned version that allows for flexible and efficient preconditioning for these linear subproblems. The original and preconditioned version is written as a new kind of proximal point method for the primal problem, and the weak (strong) convergence in infinite (finite) dimensional Hilbert spaces is proved. Various efficient preconditioners with any number of inner iterations may be used in this preconditioned framework. Furthermore, connections between the preconditioned version and the recently introduced preconditioned Douglas–Rachford method for general nonsmooth problems involving quadratic–linear terms are established. The methods are applied to total variation denoising problems, and their benefits are shown in numerical experiments.

Suggested Citation

  • Kristian Bredies & Hongpeng Sun, 2017. "A Proximal Point Analysis of the Preconditioned Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 878-907, June.
  • Handle: RePEc:spr:joptap:v:173:y:2017:i:3:d:10.1007_s10957-017-1112-5
    DOI: 10.1007/s10957-017-1112-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1112-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1112-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongpeng Sun, 2019. "Analysis of Fully Preconditioned Alternating Direction Method of Multipliers with Relaxation in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 199-229, October.
    2. V. A. Adona & M. L. N. Gonçalves & J. G. Melo, 2020. "An inexact proximal generalized alternating direction method of multipliers," Computational Optimization and Applications, Springer, vol. 76(3), pages 621-647, July.
    3. Sandy Bitterlich & Radu Ioan Boţ & Ernö Robert Csetnek & Gert Wanka, 2019. "The Proximal Alternating Minimization Algorithm for Two-Block Separable Convex Optimization Problems with Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 110-132, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:173:y:2017:i:3:d:10.1007_s10957-017-1112-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.