IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v173y2017i3d10.1007_s10957-017-1098-z.html
   My bibliography  Save this article

Gerstewitz Functionals on Linear Spaces and Functionals with Uniform Sublevel Sets

Author

Listed:
  • Petra Weidner

    (HAWK Hochschule für angewandte Wissenschaft und Kunst Hildesheim/Holzminden/Göttingen, University of Applied Sciences and Arts)

Abstract

In this paper, we study Gerstewitz functionals that are defined on an arbitrary linear space without assuming any topology. Extended real-valued functions with uniform sublevel sets turn out to be Gerstewitz functionals if the sublevel sets can be described by a linear shift of a set in a specified direction. Gerstewitz functionals can represent binary relations and thus act as a tool for scalarization. Sets, which are not necessarily convex, can be separated by Gerstewitz functionals. Conditions are given under which a Gerstewitz functional is finite-valued, convex, positively homogeneous, subadditive, sublinear or monotone. The values of each Gerstewitz functional are connected with those of a sublinear function. It is shown that some Minkowski functionals—especially order unit norms—coincide with a Gerstewitz functional on a subset of the space.

Suggested Citation

  • Petra Weidner, 2017. "Gerstewitz Functionals on Linear Spaces and Functionals with Uniform Sublevel Sets," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 812-827, June.
  • Handle: RePEc:spr:joptap:v:173:y:2017:i:3:d:10.1007_s10957-017-1098-z
    DOI: 10.1007/s10957-017-1098-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1098-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1098-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    2. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    3. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Chinaie & F. Fakhar & M. Fakhar & H. R. Hajisharifi, 2019. "Weak minimal elements and weak minimal solutions of a nonconvex set-valued optimization problem," Journal of Global Optimization, Springer, vol. 75(1), pages 131-141, September.
    2. Truong Quang Bao & Christiane Tammer, 2019. "Scalarization Functionals with Uniform Level Sets in Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 310-335, July.
    3. Chuang-Liang Zhang & Nan-jing Huang, 2021. "Set Relations and Weak Minimal Solutions for Nonconvex Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 894-914, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    2. Andreas H. Hamel & Frank Heyde, 2021. "Set-Valued T -Translative Functions and Their Applications in Finance," Mathematics, MDPI, vol. 9(18), pages 1-33, September.
    3. Acciaio Beatrice & Svindland Gregor, 2013. "Are law-invariant risk functions concave on distributions?," Dependence Modeling, De Gruyter, vol. 1(2013), pages 54-64, December.
    4. Maria Arduca & Cosimo Munari, 2021. "Risk measures beyond frictionless markets," Papers 2111.08294, arXiv.org.
    5. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    6. Kountzakis, C. & Polyrakis, I.A., 2013. "Coherent risk measures in general economic models and price bubbles," Journal of Mathematical Economics, Elsevier, vol. 49(3), pages 201-209.
    7. Michel Baes & Pablo Koch-Medina & Cosimo Munari, 2017. "Existence, uniqueness and stability of optimal portfolios of eligible assets," Papers 1702.01936, arXiv.org, revised Dec 2017.
    8. Farkas, Walter & Koch-Medina, Pablo & Munari, Cosimo, 2014. "Capital requirements with defaultable securities," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 58-67.
    9. Tiexin Guo & Erxin Zhang & Mingzhi Wu & Bixuan Yang & George Yuan & Xiaolin Zeng, 2016. "On random convex analysis," Papers 1603.07074, arXiv.org, revised Sep 2017.
    10. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    11. Martin Herdegen & Nazem Khan, 2022. "$\rho$-arbitrage and $\rho$-consistent pricing for star-shaped risk measures," Papers 2202.07610, arXiv.org, revised May 2024.
    12. Alessandro Doldi & Marco Frittelli, 2020. "Conditional Systemic Risk Measures," Papers 2010.11515, arXiv.org, revised May 2021.
    13. Marlon Moresco & Marcelo Righi & Eduardo Horta, 2020. "Minkowski gauges and deviation measures," Papers 2007.01414, arXiv.org, revised Jul 2021.
    14. Kovacevic Raimund M., 2012. "Conditional risk and acceptability mappings as Banach-lattice valued mappings," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 1-18, March.
    15. Koch-Medina, Pablo & Moreno-Bromberg, Santiago & Munari, Cosimo, 2015. "Capital adequacy tests and limited liability of financial institutions," Journal of Banking & Finance, Elsevier, vol. 51(C), pages 93-102.
    16. Alessandro Doldi & Marco Frittelli, 2020. "Entropy Martingale Optimal Transport and Nonlinear Pricing-Hedging Duality," Papers 2005.12572, arXiv.org, revised Sep 2021.
    17. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    18. Francesca Biagini & Alessandro Doldi & Jean-Pierre Fouque & Marco Frittelli & Thilo Meyer-Brandis, 2023. "Collective Arbitrage and the Value of Cooperation," Papers 2306.11599, arXiv.org, revised May 2024.
    19. Qian Lin & Frank Riedel, 2021. "Optimal consumption and portfolio choice with ambiguous interest rates and volatility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1189-1202, April.
    20. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:173:y:2017:i:3:d:10.1007_s10957-017-1098-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.