IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v171y2016i2d10.1007_s10957-015-0796-7.html
   My bibliography  Save this article

Second-Order Minimization Method for Nonsmooth Functions Allowing Convex Quadratic Approximations of the Augment

Author

Listed:
  • M. E. Abbasov

    (Saint-Petersburg University, St. Petersburg State University, SPbSU, SPbU)

Abstract

Second-order methods play an important role in the theory of optimization. Due to the usage of more information about considered function, they give an opportunity to find the stationary point faster than first-order methods. Well-known and sufficiently studied Newton’s method is widely used to optimize smooth functions. The aim of this work is to obtain a second-order method for unconstrained minimization of nonsmooth functions allowing convex quadratic approximation of the augment. This method is based on the notion of coexhausters—new objects in nonsmooth analysis, introduced by V. F. Demyanov. First, we describe and prove the second-order necessary condition for a minimum. Then, we build an algorithm based on that condition and prove its convergence. At the end of the paper, a numerical example illustrating implementation of the algorithm is given.

Suggested Citation

  • M. E. Abbasov, 2016. "Second-Order Minimization Method for Nonsmooth Functions Allowing Convex Quadratic Approximations of the Augment," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 666-674, November.
  • Handle: RePEc:spr:joptap:v:171:y:2016:i:2:d:10.1007_s10957-015-0796-7
    DOI: 10.1007/s10957-015-0796-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0796-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0796-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Abbasov & V. Demyanov, 2013. "Proper and adjoint exhausters in nonsmooth analysis: optimality conditions," Journal of Global Optimization, Springer, vol. 56(2), pages 569-585, June.
    2. M. E. Abbasov & V. F. Demyanov, 2013. "Adjoint Coexhausters in Nonsmooth Analysis and Extremality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 535-553, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentin V. Gorokhovik & Marina Trafimovich, 2016. "Positively Homogeneous Functions Revisited," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 481-503, November.
    2. Tian Sang, 2017. "On the Conjecture by Demyanov–Ryabova in Converting Finite Exhausters," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 712-727, September.
    3. Majid E. Abbasov, 2023. "Finding the set of global minimizers of a piecewise affine function," Journal of Global Optimization, Springer, vol. 85(1), pages 1-13, January.
    4. Majid E. Abbasov, 2019. "Geometric conditions of reduction of exhausters," Journal of Global Optimization, Springer, vol. 74(4), pages 737-751, August.
    5. Majid E. Abbasov, 2020. "Optimality conditions for an exhausterable function on an exhausterable set," Journal of Global Optimization, Springer, vol. 76(1), pages 57-67, January.
    6. Mahide Küçük & Ryszard Urbański & Jerzy Grzybowski & Yalçın Küçük & İlknur Atasever Güvenç & Didem Tozkan & Mustafa Soyertem, 2015. "Reduction of Weak Exhausters and Optimality Conditions via Reduced Weak Exhausters," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 693-707, June.
    7. Didem Tozkan, 2022. "On reduction of exhausters via a support function representation," Journal of Global Optimization, Springer, vol. 82(1), pages 105-118, January.
    8. Majid E. Abbasov, 2017. "Comparison Between Quasidifferentials and Exhausters," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 59-75, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:171:y:2016:i:2:d:10.1007_s10957-015-0796-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.