IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v156y2013i3d10.1007_s10957-012-0144-0.html
   My bibliography  Save this article

Adjoint Coexhausters in Nonsmooth Analysis and Extremality Conditions

Author

Listed:
  • M. E. Abbasov

    (Saint Petersburg State University)

  • V. F. Demyanov

    (Saint Petersburg State University)

Abstract

In the classical (“smooth”) mathematical analysis, a differentiable function is studied by means of the derivative (gradient in the multidimensional space). In the case of nondifferentiable functions, the tools of nonsmooth analysis are to be employed. In convex analysis and minimax theory, the corresponding classes of functions are investigated by means of the subdifferential (it is a convex set in the dual space), quasidifferentiable functions are treated via the notion of quasidifferential (which is a pair of sets). To study an arbitrary directionally differentiable function, the notions of upper and lower exhausters (each of them being a family of convex sets) are used. It turns out that conditions for a minimum are described by an upper exhauster, while conditions for a maximum are stated in terms of a lower exhauster. This is why an upper exhauster is called a proper one for the minimization problem (and an adjoint exhauster for the maximization problem) while a lower exhauster will be referred to as a proper one for the maximization problem (and an adjoint exhauster for the minimization problem). The directional derivatives (and hence, exhausters) provide first-order approximations of the increment of the function under study. These approximations are positively homogeneous as functions of direction. They allow one to formulate optimality conditions, to find steepest ascent and descent directions, to construct numerical methods. However, if, for example, the maximizer of the function is to be found, but one has an upper exhauster (which is not proper for the maximization problem), it is required to use a lower exhauster. Instead, one can try to express conditions for a maximum in terms of upper exhauster (which is an adjoint one for the maximization problem). The first to get such conditions was Roshchina. New optimality conditions in terms of adjoint exhausters were recently obtained by Abbasov. The exhauster mappings are, in general, discontinuous in the Hausdorff metric, therefore, computational problems arise. To overcome these difficulties, the notions of upper and lower coexhausters are used. They provide first-order approximations of the increment of the function which are not positively homogeneous any more. These approximations also allow one to formulate optimality conditions, to find ascent and descent directions (but not the steepest ones), to construct numerical methods possessing good convergence properties. Conditions for a minimum are described in terms of an upper coexhauster (which is, therefore, called a proper coexhauster for the minimization problem) while conditions for a maximum are described in terms of a lower coexhauster (which is called a proper one for the maximization problem). In the present paper, we derive optimality conditions in terms of adjoint coexhausters.

Suggested Citation

  • M. E. Abbasov & V. F. Demyanov, 2013. "Adjoint Coexhausters in Nonsmooth Analysis and Extremality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 535-553, March.
  • Handle: RePEc:spr:joptap:v:156:y:2013:i:3:d:10.1007_s10957-012-0144-0
    DOI: 10.1007/s10957-012-0144-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0144-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0144-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. E. Abbasov, 2016. "Second-Order Minimization Method for Nonsmooth Functions Allowing Convex Quadratic Approximations of the Augment," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 666-674, November.
    2. Valentin V. Gorokhovik & Marina Trafimovich, 2016. "Positively Homogeneous Functions Revisited," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 481-503, November.
    3. Majid E. Abbasov, 2023. "Finding the set of global minimizers of a piecewise affine function," Journal of Global Optimization, Springer, vol. 85(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:156:y:2013:i:3:d:10.1007_s10957-012-0144-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.