IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v169y2016i2d10.1007_s10957-015-0786-9.html
   My bibliography  Save this article

An Optimal Parameter for Dai–Liao Family of Conjugate Gradient Methods

Author

Listed:
  • M. Fatemi

    (K. N. Toosi University of Technology
    K. N. Toosi University of Technology)

Abstract

We introduce a new efficient nonlinear conjugate gradient method for unconstrained optimization, based on minimizing a penalty function. Our penalty function combines the good properties of the linear conjugate gradient method using some penalty parameters. We show that the new method is a member of Dai–Liao family and, more importantly, propose an efficient Dai–Liao parameter by closely analyzing the penalty function. Numerical experiments show that the proposed parameter is promising.

Suggested Citation

  • M. Fatemi, 2016. "An Optimal Parameter for Dai–Liao Family of Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 587-605, May.
  • Handle: RePEc:spr:joptap:v:169:y:2016:i:2:d:10.1007_s10957-015-0786-9
    DOI: 10.1007/s10957-015-0786-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0786-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0786-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avinoam Perry, 1977. "A Class of Conjugate Gradient Algorithms with a Two-Step Variable Metric Memory," Discussion Papers 269, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zohre Aminifard & Saman Babaie-Kafaki, 2019. "An optimal parameter choice for the Dai–Liao family of conjugate gradient methods by avoiding a direction of the maximum magnification by the search direction matrix," 4OR, Springer, vol. 17(3), pages 317-330, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. X. Kou & Y. H. Dai, 2015. "A Modified Self-Scaling Memoryless Broyden–Fletcher–Goldfarb–Shanno Method for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 209-224, April.
    2. Andrei, Neculai, 2010. "Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 204(3), pages 410-420, August.
    3. Zexian Liu & Hongwei Liu & Yu-Hong Dai, 2020. "An improved Dai–Kou conjugate gradient algorithm for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 75(1), pages 145-167, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:169:y:2016:i:2:d:10.1007_s10957-015-0786-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.