IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v169y2016i2d10.1007_s10957-015-0768-y.html
   My bibliography  Save this article

Search-Trajectory Optimization: Part I, Formulation and Theory

Author

Listed:
  • Joseph Foraker

    (U.S. Naval Academy)

  • Johannes O. Royset

    (Naval Postgraduate School)

  • Isaac Kaminer

    (Naval Postgraduate School)

Abstract

We formulate a search-trajectory optimization problem, with multiple searchers looking for multiple targets in continuous time and space, as a parameter-distributed optimal control model. The problem minimizes the probability that all of the searchers fail to detect any of the targets during a planning horizon. We construct discretization schemes and prove that they lead to consistent approximations in the sense of E. Polak.

Suggested Citation

  • Joseph Foraker & Johannes O. Royset & Isaac Kaminer, 2016. "Search-Trajectory Optimization: Part I, Formulation and Theory," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 530-549, May.
  • Handle: RePEc:spr:joptap:v:169:y:2016:i:2:d:10.1007_s10957-015-0768-y
    DOI: 10.1007/s10957-015-0768-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0768-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0768-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akira Ohsumi, 1991. "Optimal search for a Markovian target," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 531-554, August.
    2. Köji Iida, 1989. "Optimal search plan minimizing the expected risk of the search for a target with conditionally deterministic motion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(5), pages 597-613, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claire Walton & Panos Lambrianides & Isaac Kaminer & Johannes Royset & Qi Gong, 2018. "Optimal motion planning in rapid‐fire combat situations with attacker uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(2), pages 101-119, March.
    2. Manon Raap & Silja Meyer-Nieberg & Stefan Pickl & Martin Zsifkovits, 2017. "Aerial Vehicle Search-Path Optimization: A Novel Method for Emergency Operations," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 965-983, March.
    3. Morin, Michael & Abi-Zeid, Irène & Quimper, Claude-Guy, 2023. "Ant colony optimization for path planning in search and rescue operations," European Journal of Operational Research, Elsevier, vol. 305(1), pages 53-63.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoam Chung & Elijah Polak & Johannes O. Royset & Shankar Sastry, 2011. "On the optimal detection of an underwater intruder in a channel using unmanned underwater vehicles," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(8), pages 804-820, December.
    2. Claire Walton & Panos Lambrianides & Isaac Kaminer & Johannes Royset & Qi Gong, 2018. "Optimal motion planning in rapid‐fire combat situations with attacker uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(2), pages 101-119, March.
    3. Abd-Elmoneim Anwar Mohamed & Mohamed Abd Allah El-Hadidy, 2013. "Optimal Multiplicative Generalized Linear Search Plan for a Discrete Random Walker," Journal of Optimization, Hindawi, vol. 2013, pages 1-13, July.
    4. Robert F. Dell & James N. Eagle & Gustavo Henrique Alves Martins & Almir Garnier Santos, 1996. "Using multiple searchers in constrained‐path, moving‐target search problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(4), pages 463-480, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:169:y:2016:i:2:d:10.1007_s10957-015-0768-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.