IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v167y2015i2d10.1007_s10957-015-0763-3.html
   My bibliography  Save this article

Chain Rules for a Proper $$\varepsilon $$ ε -Subdifferential of Vector Mappings

Author

Listed:
  • César Gutiérrez

    (Universidad de Valladolid)

  • Lidia Huerga

    (Universidad Nacional de Educación a Distancia)

  • Vicente Novo

    (Universidad Nacional de Educación a Distancia)

  • Lionel Thibault

    (Université Montpellier 2)

Abstract

In this paper, we derive exact chain rules for a proper epsilon-subdifferential in the sense of Benson of extended vector mappings, recently introduced by ourselves. For this aim, we use a new regularity condition and a new strong epsilon-subdifferential for vector mappings. In particular, we determine chain rules when one of the mappings is linear, obtaining formulations easier to handle in the finite-dimensional case by considering the componentwise order. This Benson proper epsilon-subdifferential generalizes and improves several of the most important proper epsilon-subdifferentials of vector mappings given in the literature and, consequently, the results presented in this work extend known chain rules stated for the last ones. As an application, we derive a characterization of approximate Benson proper solutions of implicitly constrained convex Pareto problems. Moreover, we estimate the distance between the objective values of these approximate proper solutions and the set of nondominated attained values.

Suggested Citation

  • César Gutiérrez & Lidia Huerga & Vicente Novo & Lionel Thibault, 2015. "Chain Rules for a Proper $$\varepsilon $$ ε -Subdifferential of Vector Mappings," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 502-526, November.
  • Handle: RePEc:spr:joptap:v:167:y:2015:i:2:d:10.1007_s10957-015-0763-3
    DOI: 10.1007/s10957-015-0763-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0763-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0763-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. César Gutiérrez & Rubén López & Vicente Novo, 2014. "Existence and Boundedness of Solutions in Infinite-Dimensional Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 515-547, August.
    2. X. M. Yang & D. Li & S. Y. Wang, 2001. "Near-Subconvexlikeness in Vector Optimization with Set-Valued Functions," Journal of Optimization Theory and Applications, Springer, vol. 110(2), pages 413-427, August.
    3. C. Gutiérrez & B. Jiménez & V. Novo, 2006. "On Approximate Efficiency in Multiobjective Programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 165-185, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Gutiérrez & L. Huerga & V. Novo & C. Tammer, 2016. "Duality related to approximate proper solutions of vector optimization problems," Journal of Global Optimization, Springer, vol. 64(1), pages 117-139, January.
    2. Y. Gao & S. H. Hou & X. M. Yang, 2012. "Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 152(1), pages 97-120, January.
    3. César Gutiérrez & Rubén López, 2020. "On the Existence of Weak Efficient Solutions of Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 880-902, June.
    4. L. P. Hai & L. Huerga & P. Q. Khanh & V. Novo, 2019. "Variants of the Ekeland variational principle for approximate proper solutions of vector equilibrium problems," Journal of Global Optimization, Springer, vol. 74(2), pages 361-382, June.
    5. Z. A. Zhou & X. M. Yang, 2011. "Optimality Conditions of Generalized Subconvexlike Set-Valued Optimization Problems Based on the Quasi-Relative Interior," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 327-340, August.
    6. D. S. Kim & G. M. Lee & P. H. Sach, 2004. "Hartley Proper Efficiency in Multifunction Optimization," Journal of Optimization Theory and Applications, Springer, vol. 120(1), pages 129-145, January.
    7. Z. A. Zhou & J. W. Peng, 2012. "Scalarization of Set-Valued Optimization Problems with Generalized Cone Subconvexlikeness in Real Ordered Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 830-841, September.
    8. Gutiérrez, C. & Jiménez, B. & Novo, V., 2012. "Improvement sets and vector optimization," European Journal of Operational Research, Elsevier, vol. 223(2), pages 304-311.
    9. P. H. Sach, 2007. "Moreau–Rockafellar Theorems for Nonconvex Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 213-227, May.
    10. Zhenhua Peng & Yihong Xu, 2017. "New Second-Order Tangent Epiderivatives and Applications to Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 128-140, January.
    11. C. Gutiérrez & B. Jiménez & V. Novo, 2012. "Equivalent ε-efficiency notions in vector optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 437-455, July.
    12. Ying Gao & Xin-Min Yang, 2019. "Properties of the nonlinear scalar functional and its applications to vector optimization problems," Journal of Global Optimization, Springer, vol. 73(4), pages 869-889, April.
    13. Nguyen Minh Tung, 2020. "New Higher-Order Strong Karush–Kuhn–Tucker Conditions for Proper Solutions in Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 448-475, May.
    14. C. Gutiérrez & B. Jiménez & V. Novo, 2011. "A generic approach to approximate efficiency and applications to vector optimization with set-valued maps," Journal of Global Optimization, Springer, vol. 49(2), pages 313-342, February.
    15. A. Engau & M. M. Wiecek, 2007. "Cone Characterizations of Approximate Solutions in Real Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 499-513, September.
    16. P. H. Sach, 2003. "Nearly Subconvexlike Set-Valued Maps and Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(2), pages 335-356, November.
    17. P. H. Sach & D. S. Kim & L. A. Tuan & G. M. Lee, 2008. "Duality Results for Generalized Vector Variational Inequalities with Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 105-123, January.
    18. P. Kesarwani & P. K. Shukla & J. Dutta & K. Deb, 2022. "Approximations for Pareto and Proper Pareto solutions and their KKT conditions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 123-148, August.
    19. Q. S. Qiu & X. M. Yang, 2012. "Connectedness of Henig Weakly Efficient Solution Set for Set-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 439-449, February.
    20. F. Fakhar & H. R. Hajisharifi & Z. Soltani, 2023. "Noncoercive and noncontinuous equilibrium problems: existence theorem in infinite-dimensional spaces," Journal of Global Optimization, Springer, vol. 86(4), pages 989-1003, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:167:y:2015:i:2:d:10.1007_s10957-015-0763-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.