IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v165y2015i2d10.1007_s10957-014-0662-z.html
   My bibliography  Save this article

General Method for Solving the Split Common Fixed Point Problem

Author

Listed:
  • Andrzej Cegielski

    (University of Zielona GĂłra)

Abstract

The split common fixed point problem (also called the multiple-sets split feasibility problem) is to find a common fixed point of a finite family of operators in one real Hilbert space, whose image under a bounded linear transformation is a common fixed point of another family of operators in the image space. In the literature one can find many methods for solving this problem as well as for its special case, called the split feasibility problem. We propose a general method for solving both problems. The method is based on a block-iterative procedure, in which we apply quasi-nonexpansive operators satisfying the demi-closedness principle and having a common fixed point. We prove the weak convergence of sequences generated by this method and show that the convergence for methods known from the literature follows from our general result.

Suggested Citation

  • Andrzej Cegielski, 2015. "General Method for Solving the Split Common Fixed Point Problem," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 385-404, May.
  • Handle: RePEc:spr:joptap:v:165:y:2015:i:2:d:10.1007_s10957-014-0662-z
    DOI: 10.1007/s10957-014-0662-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0662-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0662-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrzej Cegielski & Yair Censor, 2011. "Opial-Type Theorems and the Common Fixed Point Problem," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 155-183, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinzuo Chen & Mihai Postolache & Li-Jun Zhu, 2019. "Iterative Algorithms for Split Common Fixed Point Problem Involved in Pseudo-Contractive Operators without Lipschitz Assumption," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
    2. Jason Xu & Eric C. Chi & Meng Yang & Kenneth Lange, 2018. "A majorization–minimization algorithm for split feasibility problems," Computational Optimization and Applications, Springer, vol. 71(3), pages 795-828, December.
    3. Ismat Beg & Mujahid Abbas & Muhammad Waseem Asghar, 2023. "Approximation of the Solution of Split Equality Fixed Point Problem for Family of Multivalued Demicontractive Operators with Application," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    4. Dianlu Tian & Lining Jiang & Luoyi Shi, 2019. "Gradient Methods with Selection Technique for the Multiple-Sets Split Equality Problem," Mathematics, MDPI, vol. 7(10), pages 1-10, October.
    5. Fenghui Wang, 2022. "The Split Feasibility Problem with Multiple Output Sets for Demicontractive Mappings," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 837-853, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yair Censor & Daniel Reem & Maroun Zaknoon, 2022. "A generalized block-iterative projection method for the common fixed point problem induced by cutters," Journal of Global Optimization, Springer, vol. 84(4), pages 967-987, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:165:y:2015:i:2:d:10.1007_s10957-014-0662-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.