IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v164y2015i3d10.1007_s10957-013-0487-1.html
   My bibliography  Save this article

A Derivative-Free Algorithm for Constrained Global Optimization Based on Exact Penalty Functions

Author

Listed:
  • Gianni Pillo

    (“Sapienza” Università di Roma)

  • Stefano Lucidi

    (“Sapienza” Università di Roma)

  • Francesco Rinaldi

    (Università di Padova)

Abstract

Constrained global optimization problems can be tackled by using exact penalty approaches. In a preceding paper, we proposed an exact penalty algorithm for constrained problems which combines an unconstrained global minimization technique for minimizing a non-differentiable exact penalty function for given values of the penalty parameter, and an automatic updating of the penalty parameter that occurs only a finite number of times. However, in the updating of the penalty parameter, the method requires the evaluation of the derivatives of the problem functions. In this work, we show that an efficient updating can be implemented also without using the problem derivatives, in this way making the approach suitable for globally solving constrained problems where the derivatives are not available. In the algorithm, any efficient derivative-free unconstrained global minimization technique can be used. In particular, we adopt an improved version of the DIRECT algorithm. In addition, to improve the performances, the approach is enriched by resorting to derivative-free local searches, in a multistart framework. In this context, we prove that, under suitable assumptions, for every global minimum point there exists a neighborhood of attraction for the local search. An extensive numerical experience is reported.

Suggested Citation

  • Gianni Pillo & Stefano Lucidi & Francesco Rinaldi, 2015. "A Derivative-Free Algorithm for Constrained Global Optimization Based on Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 862-882, March.
  • Handle: RePEc:spr:joptap:v:164:y:2015:i:3:d:10.1007_s10957-013-0487-1
    DOI: 10.1007/s10957-013-0487-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0487-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0487-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrea Cassioli & Fabio Schoen, 2013. "Global optimization of expensive black box problems with a known lower bound," Journal of Global Optimization, Springer, vol. 57(1), pages 177-190, September.
    2. G. Di Pillo & S. Lucidi & F. Rinaldi, 2012. "An approach to constrained global optimization based on exact penalty functions," Journal of Global Optimization, Springer, vol. 54(2), pages 251-260, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. Liuzzi & S. Lucidi & V. Piccialli, 2016. "Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 449-475, November.
    2. Donald R. Jones & Joaquim R. R. A. Martins, 2021. "The DIRECT algorithm: 25 years Later," Journal of Global Optimization, Springer, vol. 79(3), pages 521-566, March.
    3. M. Fernanda P. Costa & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2018. "Filter-based DIRECT method for constrained global optimization," Journal of Global Optimization, Springer, vol. 71(3), pages 517-536, July.
    4. Candelieri Antonio, 2021. "Sequential model based optimization of partially defined functions under unknown constraints," Journal of Global Optimization, Springer, vol. 79(2), pages 281-303, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Fernanda P. Costa & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2018. "Filter-based DIRECT method for constrained global optimization," Journal of Global Optimization, Springer, vol. 71(3), pages 517-536, July.
    2. G. Di Pillo & G. Liuzzi & S. Lucidi & V. Piccialli & F. Rinaldi, 2016. "A DIRECT-type approach for derivative-free constrained global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 361-397, November.
    3. Ana Maria A. C. Rocha & M. Fernanda P. Costa & Edite M. G. P. Fernandes, 2017. "On a smoothed penalty-based algorithm for global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 561-585, November.
    4. Ana Rocha & M. Costa & Edite Fernandes, 2014. "A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues," Journal of Global Optimization, Springer, vol. 60(2), pages 239-263, October.
    5. Ubaldo M. García-Palomares, 2020. "Non-monotone derivative-free algorithm for solving optimization models with linear constraints: extensions for solving nonlinearly constrained models via exact penalty methods," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 599-625, October.
    6. Yaohui Li & Yizhong Wu & Jianjun Zhao & Liping Chen, 2017. "A Kriging-based constrained global optimization algorithm for expensive black-box functions with infeasible initial points," Journal of Global Optimization, Springer, vol. 67(1), pages 343-366, January.
    7. Anurag Jayswal & Sarita Choudhury, 2016. "An Exact Minimax Penalty Function Method and Saddle Point Criteria for Nonsmooth Convex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 179-199, April.
    8. M. Fernanda P. Costa & Rogério B. Francisco & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2017. "Theoretical and Practical Convergence of a Self-Adaptive Penalty Algorithm for Constrained Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 875-893, September.
    9. M. Joseane F. G. Macêdo & Elizabeth W. Karas & M. Fernanda P. Costa & Ana Maria A. C. Rocha, 2020. "Filter-based stochastic algorithm for global optimization," Journal of Global Optimization, Springer, vol. 77(4), pages 777-805, August.
    10. C. J. Price & M. Reale & B. L. Robertson, 2016. "Stochastic filter methods for generally constrained global optimization," Journal of Global Optimization, Springer, vol. 65(3), pages 441-456, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:164:y:2015:i:3:d:10.1007_s10957-013-0487-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.