IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v163y2014i2d10.1007_s10957-013-0495-1.html
   My bibliography  Save this article

A Study of the Dual Affine Scaling Continuous Trajectories for Linear Programming

Author

Listed:
  • Li-Zhi Liao

    (Hong Kong Baptist University)

Abstract

In this paper, a continuous method approach is adopted to study both the entire process and the limiting behaviors of the dual affine scaling continuous trajectories for linear programming. Our approach is different from the method presented by Adler and Monteiro (Adler and Monteiro, Math. Program. 50:29–51, 1991). Many new theoretical results on the trajectories resulting from the dual affine scaling continuous method model for linear programming are obtained.

Suggested Citation

  • Li-Zhi Liao, 2014. "A Study of the Dual Affine Scaling Continuous Trajectories for Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 548-568, November.
  • Handle: RePEc:spr:joptap:v:163:y:2014:i:2:d:10.1007_s10957-013-0495-1
    DOI: 10.1007/s10957-013-0495-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0495-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0495-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael J. Todd, 1990. "A Dantzig-Wolfe-Like Variant of Karmarkar's Interior-Point Linear Programming Algorithm," Operations Research, INFORMS, vol. 38(6), pages 1006-1018, December.
    2. Nimrod Megiddo & Michael Shub, 1989. "Boundary Behavior of Interior Point Algorithms in Linear Programming," Mathematics of Operations Research, INFORMS, vol. 14(1), pages 97-146, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holder, A.G. & Sturm, J.F. & Zhang, S., 1998. "Analytic central path, sensitivity analysis and parametric linear programming," Econometric Institute Research Papers EI 9801, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Zhang, S., 1998. "Global error bounds for convex conic problems," Econometric Institute Research Papers EI 9830, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Dennis Cheung & Felipe Cucker & Javier Peña, 2003. "Unifying Condition Numbers for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 609-624, November.
    4. J.F. Sturm & S. Zhang, 1998. "On Sensitivity of Central Solutions in Semidefinite Programming," Tinbergen Institute Discussion Papers 98-040/4, Tinbergen Institute.
    5. A.G. Holder & J.F. Sturm & S. Zhang, 1998. "Analytic Central Path, Sensitivity Analysis and Parametric Linear Programming," Tinbergen Institute Discussion Papers 98-003/4, Tinbergen Institute.
    6. I. I. Dikin & C. Roos, 1997. "Convergence of the Dual Variables for the Primal Affine Scaling Method with Unit Steps in the Homogeneous Case," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 305-321, November.
    7. L. M. Graña Drummond & B. F. Svaiter, 1999. "On Well Definedness of the Central Path," Journal of Optimization Theory and Applications, Springer, vol. 102(2), pages 223-237, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:163:y:2014:i:2:d:10.1007_s10957-013-0495-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.