IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v155y2012i2d10.1007_s10957-012-0086-6.html
   My bibliography  Save this article

Stationarity and Regularity of Infinite Collections of Sets. Applications to Infinitely Constrained Optimization

Author

Listed:
  • Alexander Y. Kruger

    (University of Ballarat)

  • Marco A. López

    (University of Alicante)

Abstract

This article continues the investigation of stationarity and regularity properties of infinite collections of sets in a Banach space started in Kruger and López (J. Optim. Theory Appl. 154(2), 2012), and is mainly focused on the application of the stationarity criteria to infinitely constrained optimization problems. We consider several settings of optimization problems which involve (explicitly or implicitly) infinite collections of sets and deduce for them necessary conditions characterizing stationarity in terms of dual space elements—normals and/or subdifferentials.

Suggested Citation

  • Alexander Y. Kruger & Marco A. López, 2012. "Stationarity and Regularity of Infinite Collections of Sets. Applications to Infinitely Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 390-416, November.
  • Handle: RePEc:spr:joptap:v:155:y:2012:i:2:d:10.1007_s10957-012-0086-6
    DOI: 10.1007/s10957-012-0086-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0086-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0086-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. I. Kostyukova & T. V. Tchemisova & S. A. Yermalinskaya, 2010. "Convex Semi-Infinite Programming: Implicit Optimality Criterion Based on the Concept of Immobile Indices," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 325-342, May.
    2. M. A. Goberna & T. Terlaky & M. I. Todorov, 2010. "Sensitivity Analysis in Linear Semi-Infinite Programming via Partitions," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 14-26, February.
    3. Alexander Y. Kruger & Marco A. López, 2012. "Stationarity and Regularity of Infinite Collections of Sets," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 339-369, August.
    4. Nader Kanzi, 2011. "Necessary optimality conditions for nonsmooth semi-infinite programming problems," Journal of Global Optimization, Springer, vol. 49(4), pages 713-725, April.
    5. Alfred Auslender & Miguel A. Goberna & Marco A. López, 2009. "Penalty and Smoothing Methods for Convex Semi-Infinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 303-319, May.
    6. M. J. Cánovas & A. Hantoute & M. A. López & J. Parra, 2008. "Stability of Indices in the KKT Conditions and Metric Regularity in Convex Semi-Infinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(3), pages 485-500, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Y. Kruger & Nguyen H. Thao, 2015. "Quantitative Characterizations of Regularity Properties of Collections of Sets," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 41-67, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. A. Goberna & M. A. López, 2018. "Recent contributions to linear semi-infinite optimization: an update," Annals of Operations Research, Springer, vol. 271(1), pages 237-278, December.
    2. Li-Ping Pang & Jian Lv & Jin-He Wang, 2016. "Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 433-465, June.
    3. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    4. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    5. Alexander Y. Kruger & Nguyen H. Thao, 2015. "Quantitative Characterizations of Regularity Properties of Collections of Sets," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 41-67, January.
    6. Mengwei Xu & Soon-Yi Wu & Jane Ye, 2014. "Solving semi-infinite programs by smoothing projected gradient method," Computational Optimization and Applications, Springer, vol. 59(3), pages 591-616, December.
    7. N. Huy & D. Kim, 2013. "Lipschitz behavior of solutions to nonconvex semi-infinite vector optimization problems," Journal of Global Optimization, Springer, vol. 56(2), pages 431-448, June.
    8. Hoa T. Bui & Alexander Y. Kruger, 2019. "Extremality, Stationarity and Generalized Separation of Collections of Sets," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 211-264, July.
    9. Giuseppe Caristi & Massimiliano Ferrara, 2017. "Necessary conditions for nonsmooth multiobjective semi-infinite problems using Michel–Penot subdifferential," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 103-113, November.
    10. Qinghong Zhang, 2017. "Strong Duality and Dual Pricing Properties in Semi-Infinite Linear Programming: A non-Fourier–Motzkin Elimination Approach," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 702-717, December.
    11. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    12. M. Goberna & M. Todorov & V. Vera de Serio, 2012. "On stable uniqueness in linear semi-infinite optimization," Journal of Global Optimization, Springer, vol. 53(2), pages 347-361, June.
    13. Francisco Guerra-Vázquez & Jan-J. Rückmann & Ralf Werner, 2012. "On saddle points in nonconvex semi-infinite programming," Journal of Global Optimization, Springer, vol. 54(3), pages 433-447, November.
    14. N. Q. Huy & J.-C. Yao, 2011. "Semi-Infinite Optimization under Convex Function Perturbations: Lipschitz Stability," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 237-256, February.
    15. Olga Kostyukova & Tatiana Tchemisova, 2017. "Optimality Conditions for Convex Semi-infinite Programming Problems with Finitely Representable Compact Index Sets," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 76-103, October.
    16. Uhan, Nelson A., 2015. "Stochastic linear programming games with concave preferences," European Journal of Operational Research, Elsevier, vol. 243(2), pages 637-646.
    17. M. A. Goberna & M. A. López, 2017. "Recent contributions to linear semi-infinite optimization," 4OR, Springer, vol. 15(3), pages 221-264, September.
    18. David Barilla & Giuseppe Caristi & Nader Kanzi, 2022. "Optimality and duality in nonsmooth semi-infinite optimization, using a weak constraint qualification," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(2), pages 503-519, December.
    19. M. V. Dolgopolik, 2022. "DC Semidefinite programming and cone constrained DC optimization I: theory," Computational Optimization and Applications, Springer, vol. 82(3), pages 649-671, July.
    20. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "The CoMirror algorithm with random constraint sampling for convex semi-infinite programming," Annals of Operations Research, Springer, vol. 295(2), pages 809-841, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:155:y:2012:i:2:d:10.1007_s10957-012-0086-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.