IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v152y2012i1d10.1007_s10957-011-9881-8.html
   My bibliography  Save this article

Lagrangian Relaxations on Networks by ε-Subgradient Methods

Author

Listed:
  • E. Mijangos

    (University of the Basque Country)

Abstract

The efficiency of the network flow techniques can be exploited in the solution of nonlinearly constrained network flow problems by means of approximate subgradient methods. The idea is to solve the dual problem by using ε-subgradient methods, where the dual function is estimated by minimizing approximately a Lagrangian function, which relaxes the side constraints and is subject only to network constraints. In this paper, convergence results for some kind of ε-subgradient methods are put forward. Moreover, in order to evaluate the quality of the solution and the efficiency of these methods some of them have been implemented and their performances computationally compared with codes that are able to solve the proposed test problems.

Suggested Citation

  • E. Mijangos, 2012. "Lagrangian Relaxations on Networks by ε-Subgradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 152(1), pages 51-74, January.
  • Handle: RePEc:spr:joptap:v:152:y:2012:i:1:d:10.1007_s10957-011-9881-8
    DOI: 10.1007/s10957-011-9881-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-011-9881-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-011-9881-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Mijangos, 2006. "Approximate Subgradient Methods for Nonlinearly Constrained Network Flow Problems," Journal of Optimization Theory and Applications, Springer, vol. 128(1), pages 167-190, January.
    2. Mijangos, E., 2005. "An efficient method for nonlinearly constrained networks," European Journal of Operational Research, Elsevier, vol. 161(3), pages 618-635, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Regina Burachik & C. Kaya & Musa Mammadov, 2010. "An inexact modified subgradient algorithm for nonconvex optimization," Computational Optimization and Applications, Springer, vol. 45(1), pages 1-24, January.
    2. E. Mijangos, 2006. "Approximate Subgradient Methods for Nonlinearly Constrained Network Flow Problems," Journal of Optimization Theory and Applications, Springer, vol. 128(1), pages 167-190, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:152:y:2012:i:1:d:10.1007_s10957-011-9881-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.