IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v149y2011i1d10.1007_s10957-010-9780-4.html
   My bibliography  Save this article

A New Algorithm for Box-Constrained Global Optimization

Author

Listed:
  • S. Fanelli

    (Università di Roma “Tor Vergata”)

Abstract

An important class of deterministic methods for global optimization is based on the theory of terminal attractors and repellers. Unfortunately, the utilization of scalar repellers is unsuitable, when the dimension n of the problem assumes values of operational interest. In previous papers the author et al. showed that BFSG-type methods, approximating the Hessian of twice continuously differentiable functions with a structured matrix, are very efficient to compute local minima, particularly in the secant case. On the other hand, the algorithms founded on the classical αBB technique are often ineffective for computational reasons. In order to increase the power of repellers in the tunneling phases, the utilization of repeller matrices with a proper structure is certainly promising and deserves investigation. In this work, it is shown that a BFGS-type method of low complexity, implemented in the local optimizations, can be effectively matched with proper repeller matrices in the tunneling phases. The novel algorithm FBαBB, which can be applied in the frame of the αBB computational scheme, is very efficient in terms of Number of Functions Generations (NFG), Success Rates (SR) in the evaluation of the global minimum and Number of Local Searches (NLS).

Suggested Citation

  • S. Fanelli, 2011. "A New Algorithm for Box-Constrained Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 149(1), pages 175-196, April.
  • Handle: RePEc:spr:joptap:v:149:y:2011:i:1:d:10.1007_s10957-010-9780-4
    DOI: 10.1007/s10957-010-9780-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-010-9780-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-010-9780-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. E. Gounaris & C. A. Floudas, 2008. "Convexity of Products of Univariate Functions and Convexification Transformations for Geometric Programming," Journal of Optimization Theory and Applications, Springer, vol. 138(3), pages 407-427, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Ming-Hua & Tsai, Jung-Fa, 2012. "Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming problems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 17-25.
    2. Jung-Fa Tsai & Ming-Hua Lin, 2011. "An Efficient Global Approach for Posynomial Geometric Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 483-492, August.
    3. Ruth Misener & Christodoulos A. Floudas, 2014. "A Framework for Globally Optimizing Mixed-Integer Signomial Programs," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 905-932, June.
    4. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:149:y:2011:i:1:d:10.1007_s10957-010-9780-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.