IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v145y2010i2d10.1007_s10957-009-9636-y.html
   My bibliography  Save this article

Simplicial Branch-and-Reduce Algorithm for Convex Programs with a Multiplicative Constraint

Author

Listed:
  • H. P. Benson

    (University of Florida)

Abstract

Optimization problems that involve products of convex functions in the objective function or in the constraints arise in a variety of applications. These problems are difficult global optimization problems. During the past 15 years, however, a number of practical algorithms have been proposed for globally solving these types of problems. In this article, we present and validate a branch-and-reduce algorithm for finding a global optimal solution to a convex program that contains an additional constraint on the product of several convex functions. To globally solve this problem, the algorithm instead globally solves an equivalent master problem. At any stage of the algorithm, a disconnected set consisting of a union of simplices is constructed. This set is guaranteed to contain a portion of the boundary of the feasible region of the master problem where a global optimal solution lies. The algorithm uses a new branch-and-reduce scheme to iteratively reduce the sizes of these sets until a global optimal solution is found. Several potential computational advantages of the algorithm are explained, and a numerical example is solved.

Suggested Citation

  • H. P. Benson, 2010. "Simplicial Branch-and-Reduce Algorithm for Convex Programs with a Multiplicative Constraint," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 213-233, May.
  • Handle: RePEc:spr:joptap:v:145:y:2010:i:2:d:10.1007_s10957-009-9636-y
    DOI: 10.1007/s10957-009-9636-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-009-9636-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-009-9636-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuno, Takahito & Yajima, Yasutoshi & Yamamoto, Yoshitsugu & Konno, Hiroshi, 1994. "Convex programs with an additional constraint on the product of several convex functions," European Journal of Operational Research, Elsevier, vol. 77(2), pages 314-324, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erjiang Sun, 2017. "On Optimization Over the Efficient Set of a Multiple Objective Linear Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 236-246, January.
    2. Federico Cabassi & Luca Consolini & Marco Locatelli, 2018. "Time-optimal velocity planning by a bound-tightening technique," Computational Optimization and Applications, Springer, vol. 70(1), pages 61-90, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benson, Harold P. & Sun, Erjiang, 2009. "Branch-and-reduce algorithm for convex programs with additional multiplicative constraints," European Journal of Operational Research, Elsevier, vol. 199(1), pages 1-8, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:145:y:2010:i:2:d:10.1007_s10957-009-9636-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.