Absorbing Angles, Steiner Minimal Trees, and Antipodality
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-009-9552-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- H. Martini & K.J. Swanepoel & G. Weiss, 2002. "The Fermat–Torricelli Problem in Normed Planes and Spaces," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 283-314, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nguyen Mau Nam & Nguyen Hoang & Nguyen Thai An, 2014. "Constructions of Solutions to Generalized Sylvester and Fermat–Torricelli Problems for Euclidean Balls," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 483-509, February.
- Simeon Reich & Truong Minh Tuyen, 2023. "The Generalized Fermat–Torricelli Problem in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 78-97, January.
- Yaakov S. Kupitz & Horst Martini & Margarita Spirova, 2013. "The Fermat–Torricelli Problem, Part I: A Discrete Gradient-Method Approach," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 305-327, August.
- Boris Mordukhovich & Nguyen Mau Nam, 2011. "Applications of Variational Analysis to a Generalized Fermat-Torricelli Problem," Journal of Optimization Theory and Applications, Springer, vol. 148(3), pages 431-454, March.
- Thomas Jahn & Yaakov S. Kupitz & Horst Martini & Christian Richter, 2015. "Minsum Location Extended to Gauges and to Convex Sets," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 711-746, September.
- T. V. Tan, 2010. "An Extension of the Fermat-Torricelli Problem," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 735-744, September.
- Simone Görner & Christian Kanzow, 2016. "On Newton’s Method for the Fermat–Weber Location Problem," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 107-118, July.
More about this item
Keywords
Steiner minimal trees; Absorbing angles; Antipodality; Face antipodality; Minkowski geometry;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:143:y:2009:i:1:d:10.1007_s10957-009-9552-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.