IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v142y2009i2d10.1007_s10957-009-9533-4.html
   My bibliography  Save this article

Greatest Descent Algorithms in Unconstrained Optimization

Author

Listed:
  • B. S. Goh

    (Nanjing University)

Abstract

We show that, for an unconstrained optimization problem, the long-term optimal trajectory consists of a sequence of greatest descent directions and a Newton method in the final iteration. The greatest descent direction can be computed approximately by using a Levenberg-Marquardt like formula. This implies the view that the Newton method approximates a Levenberg-Marquardt like formula at a finite distance from the minimum point, instead of the standard view that the Levenberg-Marquadt formula is a way to approximate the Newton method. With the insight gained from this analysis, we develop a two-dimensional version of a Levenberg-Marquardt like formula. We make use of the two numerically largest components of the gradient vector to define here new search directions. In this way, we avoid the need of inverting a high-dimensional matrix. This reduces also the storage requirements for the full Hessian matrix in problems with a large number of variables.

Suggested Citation

  • B. S. Goh, 2009. "Greatest Descent Algorithms in Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 275-289, August.
  • Handle: RePEc:spr:joptap:v:142:y:2009:i:2:d:10.1007_s10957-009-9533-4
    DOI: 10.1007/s10957-009-9533-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-009-9533-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-009-9533-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. S. Goh, 1997. "Algorithms for Unconstrained Optimization Problems via Control Theory," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 581-604, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B. S. Goh, 2011. "Approximate Greatest Descent Methods for Optimization with Equality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 148(3), pages 505-527, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iasson Karafyllis, 2014. "Feedback Stabilization Methods for the Solution of Nonlinear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 783-806, June.
    2. B. S. Goh, 2011. "Approximate Greatest Descent Methods for Optimization with Equality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 148(3), pages 505-527, March.
    3. B. S. Goh, 2010. "Convergence of Algorithms in Optimization and Solutions of Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 43-55, January.
    4. Isaac M. Ross, 2023. "Derivation of Coordinate Descent Algorithms from Optimal Control Theory," SN Operations Research Forum, Springer, vol. 4(2), pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:142:y:2009:i:2:d:10.1007_s10957-009-9533-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.