IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v137y2008i1d10.1007_s10957-007-9320-z.html
   My bibliography  Save this article

New Condition Characterizing the Solutions of Variational Inequality Problems

Author

Listed:
  • R. Gárciga Otero

    (Instituto de Economia da Universidade Federal de Rio de Janeiro)

  • B. F. Svaiter

    (Instituto de Matemática Pura e Aplicada)

Abstract

This paper is devoted to the study of a new necessary condition in variational inequality problems: approximated gradient projection (AGP). A feasible point satisfies such condition if it is the limit of a sequence of the approximated solutions of approximations of the variational problem. This condition comes from optimization where the error in the approximated solution is measured by the projected gradient onto the approximated feasible set, which is obtained from a linearization of the constraints with slack variables to make the current point feasible. We state the AGP condition for variational inequality problems and show that it is necessary for a point being a solution even without constraint qualifications (e.g., Abadie’s). Moreover, the AGP condition is sufficient in convex variational inequalities. Sufficiency also holds for variational inequalities involving maximal monotone operators subject to the boundedness of the vectors in the image of the operator (playing the role of the gradients). Since AGP is a condition verified by a sequence, it is particularly interesting for iterative methods.

Suggested Citation

  • R. Gárciga Otero & B. F. Svaiter, 2008. "New Condition Characterizing the Solutions of Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 137(1), pages 89-98, April.
  • Handle: RePEc:spr:joptap:v:137:y:2008:i:1:d:10.1007_s10957-007-9320-z
    DOI: 10.1007/s10957-007-9320-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9320-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9320-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J.M. Martínez & B.F. Svaiter, 2003. "A Practical Optimality Condition Without Constraint Qualifications for Nonlinear Programming," Journal of Optimization Theory and Applications, Springer, vol. 118(1), pages 117-133, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Haeser & María Laura Schuverdt, 2011. "On Approximate KKT Condition and its Extension to Continuous Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 149(3), pages 528-539, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Andreani & José Mario Martínez & Alberto Ramos & Paulo J. S. Silva, 2018. "Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 693-717, August.
    2. L. F. Bueno & G. Haeser & J. M. Martínez, 2015. "A Flexible Inexact-Restoration Method for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 188-208, April.
    3. A. Pascoletti & P. Serafini, 2007. "Differential Conditions for Constrained Nonlinear Programming via Pareto Optimization," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 399-411, September.
    4. Renan W. Prado & Sandra A. Santos & Lucas E. A. Simões, 2023. "On the Fulfillment of the Complementary Approximate Karush–Kuhn–Tucker Conditions and Algorithmic Applications," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 705-736, May.
    5. R. Andreani & S. Castro & J. Chela & A. Friedlander & S. Santos, 2009. "An inexact-restoration method for nonlinear bilevel programming problems," Computational Optimization and Applications, Springer, vol. 43(3), pages 307-328, July.
    6. Hachem Slimani & Mohammed-Said Radjef, 2016. "Generalized Fritz John optimality in nonlinear programming in the presence of equality and inequality constraints," Operational Research, Springer, vol. 16(2), pages 349-364, July.
    7. Juliano Francisco & J. Martínez & Leandro Martínez & Feodor Pisnitchenko, 2011. "Inexact restoration method for minimization problems arising in electronic structure calculations," Computational Optimization and Applications, Springer, vol. 50(3), pages 555-590, December.
    8. Ademir A. Ribeiro & Mael Sachine & Evelin H. M. Krulikovski, 2022. "A Comparative Study of Sequential Optimality Conditions for Mathematical Programs with Cardinality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 1067-1083, March.
    9. Gabriel Haeser & María Laura Schuverdt, 2011. "On Approximate KKT Condition and its Extension to Continuous Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 149(3), pages 528-539, June.
    10. An, Kun & Lo, Hong K., 2014. "Ferry service network design with stochastic demand under user equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 70-89.
    11. L. F. Bueno & G. Haeser & F. Lara & F. N. Rojas, 2020. "An Augmented Lagrangian method for quasi-equilibrium problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 737-766, July.
    12. Nithirat Sisarat & Rabian Wangkeeree & Tamaki Tanaka, 2020. "Sequential characterizations of approximate solutions in convex vector optimization problems with set-valued maps," Journal of Global Optimization, Springer, vol. 77(2), pages 273-287, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:137:y:2008:i:1:d:10.1007_s10957-007-9320-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.