IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v130y2006i2d10.1007_s10957-006-9097-5.html
   My bibliography  Save this article

Distance to Ill-Posedness in Linear Optimization via the Fenchel-Legendre Conjugate

Author

Listed:
  • M. J. Cánovas

    (Miguel Hernández University of Elche, Elche)

  • M. A. López

    (University of Alicante)

  • J. Parra

    (Miguel Hernández University of Elche, Elche)

  • F. J. Toledo

    (Miguel Hernández University of Elche, Elche)

Abstract

We consider the parameter space of all the linear inequality systems, in the n-dimensional Euclidean space and with a fixed index set, endowed with the topology of the uniform convergence of the coefficient vectors. A system is ill-posed with respect to the consistency when arbitrarily small perturbations yield both consistent and inconsistent systems. In this paper, we establish a formula for measuring the distance from the nominal system to the set of ill-posed systems. To this aim, we use the Fenchel-Legendre conjugation theory and prove a refinement of the formula in Ref. 1 for the distance from any point to the boundary of a convex set.

Suggested Citation

  • M. J. Cánovas & M. A. López & J. Parra & F. J. Toledo, 2006. "Distance to Ill-Posedness in Linear Optimization via the Fenchel-Legendre Conjugate," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 173-183, August.
  • Handle: RePEc:spr:joptap:v:130:y:2006:i:2:d:10.1007_s10957-006-9097-5
    DOI: 10.1007/s10957-006-9097-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-006-9097-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-006-9097-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. B. Hiriart-Urruty, 1979. "Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces," Mathematics of Operations Research, INFORMS, vol. 4(1), pages 79-97, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2022. "The radius of robust feasibility of uncertain mathematical programs: A Survey and recent developments," European Journal of Operational Research, Elsevier, vol. 296(3), pages 749-763.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marius Durea & Radu Strugariu & Christiane Tammer, 2013. "Scalarization in Geometric and Functional Vector Optimization Revisited," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 635-655, December.
    2. Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022. "Nonsmooth Implicit Differentiation for Machine Learning and Optimization," TSE Working Papers 22-1314, Toulouse School of Economics (TSE).
    3. Khushboo & C. S. Lalitha, 2018. "Scalarizations for a unified vector optimization problem based on order representing and order preserving properties," Journal of Global Optimization, Springer, vol. 70(4), pages 903-916, April.
    4. Ginchev Ivan & Guerraggio Angelo & Rocca Matteo, 2003. "First-Order Conditions for C0,1 Constrained vector optimization," Economics and Quantitative Methods qf0307, Department of Economics, University of Insubria.
    5. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "Robustness Characterizations for Uncertain Optimization Problems via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 459-479, August.
    6. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
    7. Rocca Matteo & Papalia Melania, 2008. "Well-posedness in vector optimization and scalarization results," Economics and Quantitative Methods qf0807, Department of Economics, University of Insubria.
    8. S. J. Li & Y. D. Xu & S. K. Zhu, 2012. "Nonlinear Separation Approach to Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 842-856, September.
    9. Giovanni Paolo Crespi & Andreas H. Hamel & Matteo Rocca & Carola Schrage, 2021. "Set Relations via Families of Scalar Functions and Approximate Solutions in Set Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 361-381, February.
    10. Giorgio Giorgi, 2021. "On Notations for Conic Hulls and Related Considerations on Tangent Cones," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 13(3), pages 1-13, June.
    11. Ning E. & Wen Song & Yu Zhang, 2012. "Second order sufficient optimality conditions in vector optimization," Journal of Global Optimization, Springer, vol. 54(3), pages 537-549, November.
    12. Crespi Giovanni P. & Ginchev Ivan & Rocca Matteo, 2004. "First order optimality conditions in set-valued optimization," Economics and Quantitative Methods qf04010, Department of Economics, University of Insubria.
    13. L. Huerga & B. Jiménez & V. Novo, 2022. "New Notions of Proper Efficiency in Set Optimization with the Set Criterion," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 878-902, December.
    14. N. Gadhi & S. Dempe, 2012. "Necessary Optimality Conditions and a New Approach to Multiobjective Bilevel Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 100-114, October.
    15. Jiawei Chen & Shengjie Li & Zhongping Wan & Jen-Chih Yao, 2015. "Vector Variational-Like Inequalities with Constraints: Separation and Alternative," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 460-479, August.
    16. Ginchev Ivan & Guerraggio Angelo & Rocca Matteo, 2004. "Second-order conditions in C1,1 constrained vector optimization," Economics and Quantitative Methods qf0409, Department of Economics, University of Insubria.
    17. Y. D. Xu & S. J. Li, 2013. "Optimality Conditions for Generalized Ky Fan Quasi-Inequalities with Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 663-684, June.
    18. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "Characterizations for Optimality Conditions of General Robust Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 835-856, June.
    19. Qamrul Hasan Ansari & Elisabeth Köbis & Pradeep Kumar Sharma, 2019. "Characterizations of Multiobjective Robustness via Oriented Distance Function and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 817-839, June.
    20. M. Durea & J. Dutta & C. Tammer, 2010. "Lagrange Multipliers for ε-Pareto Solutions in Vector Optimization with Nonsolid Cones in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 196-211, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:130:y:2006:i:2:d:10.1007_s10957-006-9097-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.