IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v123y2004i3d10.1007_s10957-004-5720-5.html
   My bibliography  Save this article

Augmented Lagrangian Algorithms Based on the Spectral Projected Gradient Method for Solving Nonlinear Programming Problems

Author

Listed:
  • M. A. Diniz-Ehrhardt

    (IMECC-UNICAMP)

  • M. A. Gomes-Ruggiero

    (IMECC-UNICAMP)

  • J. M. Martínez

    (IMECC-UNICAMP)

  • S. A. Santos

    (IMECC-UNICAMP)

Abstract

The spectral projected gradient method SPG is an algorithm for large-scale bound-constrained optimization introduced recently by Birgin, Martínez, and Raydan. It is based on the Raydan unconstrained generalization of the Barzilai-Borwein method for quadratics. The SPG algorithm turned out to be surprisingly effective for solving many large-scale minimization problems with box constraints. Therefore, it is natural to test its perfomance for solving the sub-problems that appear in nonlinear programming methods based on augmented Lagrangians. In this work, augmented Lagrangian methods which use SPG as the underlying convex-constraint solver are introduced (ALSPG) and the methods are tested in two sets of problems. First, a meaningful subset of large-scale nonlinearly constrained problems of the CUTE collection is solved and compared with the perfomance of LANCELOT. Second, a family of location problems in the minimax formulation is solved against the package FFSQP.

Suggested Citation

  • M. A. Diniz-Ehrhardt & M. A. Gomes-Ruggiero & J. M. Martínez & S. A. Santos, 2004. "Augmented Lagrangian Algorithms Based on the Spectral Projected Gradient Method for Solving Nonlinear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 123(3), pages 497-517, December.
  • Handle: RePEc:spr:joptap:v:123:y:2004:i:3:d:10.1007_s10957-004-5720-5
    DOI: 10.1007/s10957-004-5720-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-004-5720-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-004-5720-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Birgin, Ernesto G. & Martínez, Jose Mario & Raydan, Marcos, 2014. "Spectral Projected Gradient Methods: Review and Perspectives," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i03).
    2. H. Z. Luo & X. L. Sun & Y. F. Xu, 2010. "Convergence Properties of Modified and Partially-Augmented Lagrangian Methods for Mathematical Programs with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 489-506, June.
    3. Torrealba, E.M.R. & Silva, J.G. & Matioli, L.C. & Kolossoski, O. & Santos, P.S.M., 2022. "Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 46-59.
    4. Huixian Wu & Hezhi Luo & Xiaodong Ding & Guanting Chen, 2013. "Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(3), pages 531-558, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:123:y:2004:i:3:d:10.1007_s10957-004-5720-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.