IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v117y2003i3d10.1023_a1023949722269.html
   My bibliography  Save this article

On Duality for a Class of Quasiconcave Multiplicative Programs

Author

Listed:
  • C.H. Scott

    (University of California)

  • T.R. Jefferson

    (Sultan Qaboos University)

Abstract

Multiplicative programs are a difficult class of nonconvex programs that have received increasing attention because of their many applications. However, given their nonconvex nature, few theoretical results are available. In this paper, we study a particular case of these programs which involves the maximization of a quasiconcave function over a linear constraint set. Using results from conjugate function theory and generalized geometric programming, we derive a complete duality theory. The results are further specialized to linear multiplicative programming.

Suggested Citation

  • C.H. Scott & T.R. Jefferson, 2003. "On Duality for a Class of Quasiconcave Multiplicative Programs," Journal of Optimization Theory and Applications, Springer, vol. 117(3), pages 575-583, June.
  • Handle: RePEc:spr:joptap:v:117:y:2003:i:3:d:10.1023_a:1023949722269
    DOI: 10.1023/A:1023949722269
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1023949722269
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1023949722269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elmor L. Peterson, 1976. "Fenchel's Duality Thereom in Generalized Geometric Programming," Discussion Papers 252, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. Elmor L. Peterson, 1976. "Optimality Conditions in Generalized Geometric Programming," Discussion Papers 221, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. I. Boţ & S. M. Grad & G. Wanka, 2006. "Fenchel-Lagrange Duality Versus Geometric Duality in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 33-54, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiu, Nan-Chieh & Fang, Shu-Cherng & Lavery, John E. & Lin, Jen-Yen & Wang, Yong, 2008. "Approximating term structure of interest rates using cubic L1 splines," European Journal of Operational Research, Elsevier, vol. 184(3), pages 990-1004, February.
    2. Kenneth Lange & Eric C. Chi & Hua Zhou, 2014. "Rejoinder," International Statistical Review, International Statistical Institute, vol. 82(1), pages 81-89, April.
    3. R. I. Boţ & S. M. Grad & G. Wanka, 2006. "Fenchel-Lagrange Duality Versus Geometric Duality in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 33-54, April.
    4. C. Scott & T. Jefferson, 2007. "On duality for square root convex programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 75-84, February.
    5. C. E. Gounaris & C. A. Floudas, 2008. "Convexity of Products of Univariate Functions and Convexification Transformations for Geometric Programming," Journal of Optimization Theory and Applications, Springer, vol. 138(3), pages 407-427, September.
    6. Belleh Fontem, 2023. "Robust Chance-Constrained Geometric Programming with Application to Demand Risk Mitigation," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 765-797, May.
    7. Hua Zhou & Kenneth Lange, 2015. "Path following in the exact penalty method of convex programming," Computational Optimization and Applications, Springer, vol. 61(3), pages 609-634, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:117:y:2003:i:3:d:10.1023_a:1023949722269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.