IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v110y2001i2d10.1023_a1017583514580.html
   My bibliography  Save this article

Directional End of a Convex Set: Theory and Applications

Author

Listed:
  • M. A. Goberna
  • V. Jornet
  • M. Rodríguez

Abstract

A point of a convex set belongs to its end in a given direction when this direction is not feasible at that point. This paper analyzes the properties of the directional end of general convex sets and closed convex sets (for which the directional ends are connected by arcs) as well as the relationship between the directional end and certain concepts on the illumination of convex bodies. The paper includes applications of the directional end to the theory of linear systems.

Suggested Citation

  • M. A. Goberna & V. Jornet & M. Rodríguez, 2001. "Directional End of a Convex Set: Theory and Applications," Journal of Optimization Theory and Applications, Springer, vol. 110(2), pages 389-411, August.
  • Handle: RePEc:spr:joptap:v:110:y:2001:i:2:d:10.1023_a:1017583514580
    DOI: 10.1023/A:1017583514580
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1017583514580
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1017583514580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rubén Puente & Virginia Vera de Serio, 1999. "Locally Farkas-Minkowski linear inequality systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(1), pages 103-121, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li-Ping Pang & Jian Lv & Jin-He Wang, 2016. "Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 433-465, June.
    2. Nader Kanzi, 2011. "Necessary optimality conditions for nonsmooth semi-infinite programming problems," Journal of Global Optimization, Springer, vol. 49(4), pages 713-725, April.
    3. M.A. Goberna & V. Jornet & M. Molina, 2003. "Saturation in Linear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 117(2), pages 327-348, May.
    4. Goberna, M.A. & Guerra-Vazquez, F. & Todorov, M.I., 2016. "Constraint qualifications in convex vector semi-infinite optimization," European Journal of Operational Research, Elsevier, vol. 249(1), pages 32-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:110:y:2001:i:2:d:10.1023_a:1017583514580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.