IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v109y2001i2d10.1023_a1017514422146.html
   My bibliography  Save this article

New Complexity Analysis of the Primal–Dual Method for Semidefinite Optimization Based on the Nesterov–Todd Direction

Author

Listed:
  • J. PENG

    (Delft University of Technology)

  • C. ROOS

    (Delft University of Technology)

  • T. TERLAKY

    (McMaster University)

Abstract

Interior-point methods for semidefinite optimization have been studied intensively in recent times, due to their polynomial complexity and practical efficiency. In this paper, first we present some technical results about symmetric matrices. Then, we apply these results to give a unified analysis for both large update and small update interior-point methods for SDP based on the Nesterov–Todd (NT) direction.

Suggested Citation

  • J. Peng & C. Roos & T. Terlaky, 2001. "New Complexity Analysis of the Primal–Dual Method for Semidefinite Optimization Based on the Nesterov–Todd Direction," Journal of Optimization Theory and Applications, Springer, vol. 109(2), pages 327-343, May.
  • Handle: RePEc:spr:joptap:v:109:y:2001:i:2:d:10.1023_a:1017514422146
    DOI: 10.1023/A:1017514422146
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1017514422146
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1017514422146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu. E. Nesterov & M. J. Todd, 1997. "Self-Scaled Barriers and Interior-Point Methods for Convex Programming," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 1-42, February.
    2. Kurt M. Anstreicher & Jun Ji & Florian A. Potra & Yinyu Ye, 1999. "Probabilistic Analysis of an Infeasible-Interior-Point Algorithm for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 24(1), pages 176-192, February.
    3. Andersen, E.D. & Gondzio, J. & Meszaros, C. & Xu, X., 1996. "Implementation of Interior Point Methods for Large Scale Linear Programming," Papers 96.3, Ecole des Hautes Etudes Commerciales, Universite de Geneve-.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Terlaky, Tamas, 2001. "An easy way to teach interior-point methods," European Journal of Operational Research, Elsevier, vol. 130(1), pages 1-19, April.
    2. Peng, Jiming & Roos, Cornelis & Terlaky, Tamas, 2002. "A new class of polynomial primal-dual methods for linear and semidefinite optimization," European Journal of Operational Research, Elsevier, vol. 143(2), pages 234-256, December.
    3. Illes, Tibor & Terlaky, Tamas, 2002. "Pivot versus interior point methods: Pros and cons," European Journal of Operational Research, Elsevier, vol. 140(2), pages 170-190, July.
    4. Maros, Istvan & Haroon Khaliq, Mohammad, 2002. "Advances in design and implementation of optimization software," European Journal of Operational Research, Elsevier, vol. 140(2), pages 322-337, July.
    5. Chee-Khian Sim, 2019. "Interior point method on semi-definite linear complementarity problems using the Nesterov–Todd (NT) search direction: polynomial complexity and local convergence," Computational Optimization and Applications, Springer, vol. 74(2), pages 583-621, November.
    6. Sturm, J.F., 2001. "Avoiding Numerical Cancellation in the Interior Point Method for Solving Semidefinite Programs," Other publications TiSEM 949fb20a-a2c6-4d87-85ea-8, Tilburg University, School of Economics and Management.
    7. Robert Chares & François Glineur, 2008. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(3), pages 383-405, December.
    8. Michael Orlitzky, 2021. "Gaddum’s test for symmetric cones," Journal of Global Optimization, Springer, vol. 79(4), pages 927-940, April.
    9. Stojkovic, Nebojsa V. & Stanimirovic, Predrag S., 2001. "Two direct methods in linear programming," European Journal of Operational Research, Elsevier, vol. 131(2), pages 417-439, June.
    10. Jacek Gondzio & Andreas Grothey, 2009. "Exploiting structure in parallel implementation of interior point methods for optimization," Computational Management Science, Springer, vol. 6(2), pages 135-160, May.
    11. B.V. Halldórsson & R.H. Tütüncü, 2003. "An Interior-Point Method for a Class of Saddle-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 116(3), pages 559-590, March.
    12. G. Q. Wang & Y. Q. Bai, 2012. "A New Full Nesterov–Todd Step Primal–Dual Path-Following Interior-Point Algorithm for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 966-985, September.
    13. G. Q. Wang & L. C. Kong & J. Y. Tao & G. Lesaja, 2015. "Improved Complexity Analysis of Full Nesterov–Todd Step Feasible Interior-Point Method for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 588-604, August.
    14. E. A. Yıldırım, 2003. "An Interior-Point Perspective on Sensitivity Analysis in Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 649-676, November.
    15. Xiao-Kang Wang & Wen-Hui Hou & Chao Song & Min-Hui Deng & Yong-Yi Li & Jian-Qiang Wang, 2021. "BW-MaxEnt: A Novel MCDM Method for Limited Knowledge," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    16. Héctor Ramírez & David Sossa, 2017. "On the Central Paths in Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 649-668, February.
    17. Vasile L. Basescu & John E. Mitchell, 2008. "An Analytic Center Cutting Plane Approach for Conic Programming," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 529-551, August.
    18. Ximei Yang & Hongwei Liu & Yinkui Zhang, 2015. "A New Strategy in the Complexity Analysis of an Infeasible-Interior-Point Method for Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 572-587, August.
    19. G. Q. Wang & Y. Q. Bai & X. Y. Gao & D. Z. Wang, 2015. "Improved Complexity Analysis of Full Nesterov–Todd Step Interior-Point Methods for Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 242-262, April.
    20. Maziar Salahi & Renata Sotirov & Tamás Terlaky, 2004. "On self-regular IPMs," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(2), pages 209-275, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:109:y:2001:i:2:d:10.1023_a:1017514422146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.