IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v101y1999i2d10.1023_a1021749829267.html
   My bibliography  Save this article

Error Bounds for Nonnegative Dynamic Models

Author

Listed:
  • N. M. Van Dijk

    (University of Amsterdam)

  • K. Sladký

    (Academy of Sciences of the Czech Republic)

Abstract

The extension of Markov reward models to dynamic models with nonnegative matrices is motivated by practical applications, such as economic input–output, employment, or population models. This paper studies the generalization of error bound theorems for Markov reward structures to dynamic reward structures with arbitrary nonnegative matrices. Both irreducible and reducible matrices are covered. In addition, results for the stochastic case are unified and extended. First, generalized expressions are derived for average reward functions. The special normalization case is distinguished and is shown to be transformable into the stochastic case. Its interpretation is of interest in itself. Next, error bound results are studied. Under a general normalization condition, it is shown that the results for the stochastic case can be extended. Both the average case and the transient case are included. A random walk-type example is included to illustrate the results.

Suggested Citation

  • N. M. Van Dijk & K. Sladký, 1999. "Error Bounds for Nonnegative Dynamic Models," Journal of Optimization Theory and Applications, Springer, vol. 101(2), pages 449-474, May.
  • Handle: RePEc:spr:joptap:v:101:y:1999:i:2:d:10.1023_a:1021749829267
    DOI: 10.1023/A:1021749829267
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021749829267
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021749829267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ward Whitt, 1978. "Approximations of Dynamic Programs, I," Mathematics of Operations Research, INFORMS, vol. 3(3), pages 231-243, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dijk, N.M. van, 1989. "Truncation of Markov decision problems with a queueing network overflow control application," Serie Research Memoranda 0065, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    2. Silvia Florio & Wolfgang Runggaldier, 1999. "On hedging in finite security markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 159-176.
    3. Richard T. Boylan & Bente Villadsen, "undated". "A Bellman's Equation for the Study of Income Smoothing," Computing in Economics and Finance 1996 _009, Society for Computational Economics.
    4. Robert Kirkby Author-Email: robertkirkby@gmail.com|, 2017. "Convergence of Discretized Value Function Iteration," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 117-153, January.
    5. Benjamin Van Roy, 2006. "Performance Loss Bounds for Approximate Value Iteration with State Aggregation," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 234-244, May.
    6. So, Wai Ping & Wan, Yat-wah, 2000. "A multi-grid size dynamic programming approach for the production control of a random-speed machine," International Journal of Production Economics, Elsevier, vol. 63(3), pages 267-275, January.
    7. Jie Ning & Matthew J. Sobel, 2019. "Easy Affine Markov Decision Processes," Operations Research, INFORMS, vol. 67(6), pages 1719-1737, November.
    8. Dijk, N.M. van, 1989. "The importance of bias-terms for error bounds and comparison results," Serie Research Memoranda 0036, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    9. Nicola Secomandi & François Margot, 2009. "Reoptimization Approaches for the Vehicle-Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 57(1), pages 214-230, February.
    10. van Dijk, Nico M., 2008. "Error bounds for state space truncation of finite Jackson networks," European Journal of Operational Research, Elsevier, vol. 186(1), pages 164-181, April.
    11. Knolmayer, Gerhard, 1981. "A simulation study of simplification strategies in the development of optimization models," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 96, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    12. Mabel M. TIDBALL & Eitan ALTMAN, 1994. "Approximations In Dynamic Zero-Sum Games," Game Theory and Information 9401001, University Library of Munich, Germany.
    13. Dijk, N.M. van, 1988. "Truncation of Markov chains with applications to queueing," Serie Research Memoranda 0053, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    14. Runggaldier, Wolfgang J., 1998. "Concepts and methods for discrete and continuous time control under uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 25-39, May.
    15. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2004. "Dynamic Programming Approximations for a Stochastic Inventory Routing Problem," Transportation Science, INFORMS, vol. 38(1), pages 42-70, February.
    16. Insoon Yang, 2020. "A Convex Optimization Approach to Dynamic Programming in Continuous State and Action Spaces," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 133-157, October.
    17. William B. Haskell & Rahul Jain & Dileep Kalathil, 2016. "Empirical Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 402-429, May.
    18. Naci Saldi & Serdar Yüksel & Tamás Linder, 2017. "On the Asymptotic Optimality of Finite Approximations to Markov Decision Processes with Borel Spaces," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 945-978, November.
    19. Pelin Canbolat & Uriel Rothblum, 2013. "(Approximate) iterated successive approximations algorithm for sequential decision processes," Annals of Operations Research, Springer, vol. 208(1), pages 309-320, September.
    20. Ali Fattahi & Sriram Dasu & Reza Ahmadi, 2023. "Peak-Load Energy Management by Direct Load Control Contracts," Management Science, INFORMS, vol. 69(5), pages 2788-2813, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:101:y:1999:i:2:d:10.1023_a:1021749829267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.