IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i8d10.1007_s10845-023-02225-x.html
   My bibliography  Save this article

Optimization of processing parameters for waterjet-guided laser machining of SiC/SiC composites

Author

Listed:
  • Mengxuan Gao

    (Beihang University)

  • Songmei Yuan

    (Beihang University
    Ningbo Institute of Technology, Beihang University)

  • Jiayong Wei

    (Beihang University)

  • Jin Niu

    (University of British Columbia (UBC))

  • Zikang Zhang

    (Beihang University)

  • Xiaoqi Li

    (Beihang University)

  • Jiaqi Zhang

    (Beihang University)

  • Ning Zhou

    (Beihang University)

  • Mingrui Luo

    (University of Chinese Academy of Sciences)

Abstract

Interactions between light and matter during short-pulse water-jet guided laser materials processing are highly nonlinear, and acutely sensitive to laser machining parameters. Traditionally, the physical simulation calculation methods based on laser, water and composite materials are complicated. This work combines neural networks and physical simulation models in the understanding of laser drilling of composite materials. Neural networks are used to predict SiC/SiC composites laser drilling results by using processing parameters (average power, scanning speed, and filling spacing) as input parameters, optimal combinations of processing parameters based on the neural network are identified, and the effectiveness of the learned knowledge is validated using a physical simulation model. The results show that the neural network can identify the nonlinear effect of processing parameters on machining quality with the MAE of 0.054 and the RMSE of 0.067. The physical simulation model could explain why this nonlinear effect exists. This method can be applied to a wide range of fields. In the face of unknown material and physical processing processes, the approach of combining neural networks and physical simulation models has the potential to significantly reduce the optimization time and deepen the understanding of laser processing.

Suggested Citation

  • Mengxuan Gao & Songmei Yuan & Jiayong Wei & Jin Niu & Zikang Zhang & Xiaoqi Li & Jiaqi Zhang & Ning Zhou & Mingrui Luo, 2024. "Optimization of processing parameters for waterjet-guided laser machining of SiC/SiC composites," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 4137-4157, December.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:8:d:10.1007_s10845-023-02225-x
    DOI: 10.1007/s10845-023-02225-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02225-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02225-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael D. T. McDonnell & Daniel Arnaldo & Etienne Pelletier & James A. Grant-Jacob & Matthew Praeger & Dimitris Karnakis & Robert W. Eason & Ben Mills, 2021. "Machine learning for multi-dimensional optimisation and predictive visualisation of laser machining," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1471-1483, June.
    2. Kai Liao & Wenjun Wang & Xuesong Mei & Wenwen Tian & Hai Yuan & Mingqiong Wang & Bozhe Wang, 2023. "Shape regulation of tapered microchannels in silica glass ablated by femtosecond laser with theoretical modeling and machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2907-2924, October.
    3. Yingjie Zhang & Wentao Yan, 2023. "Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2557-2580, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasan Tercan & Tobias Meisen, 2022. "Machine learning and deep learning based predictive quality in manufacturing: a systematic review," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1879-1905, October.
    2. Kai Liao & Wenjun Wang & Xuesong Mei & Wenwen Tian & Hai Yuan & Mingqiong Wang & Bozhe Wang, 2023. "Shape regulation of tapered microchannels in silica glass ablated by femtosecond laser with theoretical modeling and machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2907-2924, October.
    3. Hasan Tercan & Philipp Deibert & Tobias Meisen, 2022. "Continual learning of neural networks for quality prediction in production using memory aware synapses and weight transfer," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 283-292, January.
    4. Patrick G. Mongan & Vedant Modi & John W. McLaughlin & Eoin P. Hinchy & Ronan M. O’Higgins & Noel P. O’Dowd & Conor T. McCarthy, 2022. "Multi-objective optimisation of ultrasonically welded dissimilar joints through machine learning," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1125-1138, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:8:d:10.1007_s10845-023-02225-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.