IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i4d10.1007_s10845-022-01911-6.html
   My bibliography  Save this article

Multi-objective optimisation of ultrasonically welded dissimilar joints through machine learning

Author

Listed:
  • Patrick G. Mongan

    (Confirm Smart Manufacturing Research Centre
    University of Limerick)

  • Vedant Modi

    (University of Limerick)

  • John W. McLaughlin

    (University of Limerick)

  • Eoin P. Hinchy

    (Confirm Smart Manufacturing Research Centre
    University of Limerick)

  • Ronan M. O’Higgins

    (University of Limerick
    University of Limerick)

  • Noel P. O’Dowd

    (Confirm Smart Manufacturing Research Centre
    University of Limerick
    University of Limerick)

  • Conor T. McCarthy

    (Confirm Smart Manufacturing Research Centre
    University of Limerick
    University of Limerick)

Abstract

The use of composite materials is increasing in industry sectors such as renewable energy generation and storage, transport (including automotive, aerospace and agri-machinery) and construction. This is a result of the various advantages of composite materials over their monolithic counterparts, such as high strength-to-weight ratio, corrosion resistance, and superior fatigue performance. However, there is a lack of detailed knowledge in relation to fusion joining techniques for composite materials. In this work, ultrasonic welding is carried out on a carbon fibre/PEKK composite material bonded to carbon fibre/epoxy composite to investigate the influence of weld process parameters on the joint’s lap shear strength (LSS), the process repeatability, and the process induced defects. A 33 parametric study is carried out and a robust machine learning model is developed using a hybrid genetic algorithm–artificial neural network (GA–ANN) trained on the experimental data. Bayesian optimisation is employed to determine the most suitable GA–ANN hyperparameters and the resulting GA–ANN surrogate model is exploited to optimise the welding process, where the process performance metrics are LSS, repeatability and joint visual quality. The prediction for the optimal LSS was subsequently validated through a further set of experiments, which resulted in a prediction error of just 3%.

Suggested Citation

  • Patrick G. Mongan & Vedant Modi & John W. McLaughlin & Eoin P. Hinchy & Ronan M. O’Higgins & Noel P. O’Dowd & Conor T. McCarthy, 2022. "Multi-objective optimisation of ultrasonically welded dissimilar joints through machine learning," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1125-1138, April.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:4:d:10.1007_s10845-022-01911-6
    DOI: 10.1007/s10845-022-01911-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01911-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01911-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael D. T. McDonnell & Daniel Arnaldo & Etienne Pelletier & James A. Grant-Jacob & Matthew Praeger & Dimitris Karnakis & Robert W. Eason & Ben Mills, 2021. "Machine learning for multi-dimensional optimisation and predictive visualisation of laser machining," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1471-1483, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Liao & Wenjun Wang & Xuesong Mei & Wenwen Tian & Hai Yuan & Mingqiong Wang & Bozhe Wang, 2023. "Shape regulation of tapered microchannels in silica glass ablated by femtosecond laser with theoretical modeling and machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2907-2924, October.
    2. Hasan Tercan & Tobias Meisen, 2022. "Machine learning and deep learning based predictive quality in manufacturing: a systematic review," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1879-1905, October.
    3. Hasan Tercan & Philipp Deibert & Tobias Meisen, 2022. "Continual learning of neural networks for quality prediction in production using memory aware synapses and weight transfer," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 283-292, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:4:d:10.1007_s10845-022-01911-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.