IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i7d10.1007_s10845-023-02195-0.html
   My bibliography  Save this article

Building digital-twin virtual machining for milling chatter detection based on VMD, synchro-squeeze wavelet, and pre-trained network CNNs with vibration signals

Author

Listed:
  • Khairul Jauhari

    (Diponegoro University
    National Research and Innovation Agency (BRIN))

  • Achmad Zaki Rahman

    (Diponegoro University
    National Research and Innovation Agency (BRIN))

  • Mahfudz Huda

    (National Research and Innovation Agency (BRIN))

  • Achmad Widodo

    (Diponegoro University)

  • Toni Prahasto

    (Diponegoro University)

Abstract

Smart machining is becoming a major trend in the present manufacturing industry, which is increasingly adopting digital technology and artificial intelligence to improve production processes’ quality, speed, efficiency, and safety. This condition leads to the presentation of an updated study regarding the application of the digital-twin virtual machining model development, to detect chatter phenomena in milling processes. Chatter is a dynamic interaction where an instability state is observed between the workpiece and the cutter during material removal. This process affects the roughness of the finish surface and tool-life and eventually reduces the machining results in quality. Consequently, a novel intelligent machining system was developed for detecting chatter based on the variational mode decomposition method, wavelet-based synchro-squeeze transform, and Transfer Learning (TL) application. This TL application was created using modified pre-trained convolution neural networks to identify unstable (chatter) or stable state conditions of the process of milling-cut. The model was also developed due to being data-driven, where the measured vibration signals for the process of milling-cut were trained and tested through several modified pre-trained networks. The results showed a good-level model with an average classification accuracy of 94.04%. Therefore, the manufacturing industry could adopt this novel method, especially in machining, to overcome the problem of emphasizing the limited process of data monitoring conditions.

Suggested Citation

  • Khairul Jauhari & Achmad Zaki Rahman & Mahfudz Huda & Achmad Widodo & Toni Prahasto, 2024. "Building digital-twin virtual machining for milling chatter detection based on VMD, synchro-squeeze wavelet, and pre-trained network CNNs with vibration signals," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3083-3114, October.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:7:d:10.1007_s10845-023-02195-0
    DOI: 10.1007/s10845-023-02195-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02195-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02195-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Tong & Qiang Liu & Shiwei Pi & Yao Xiao, 2020. "Real-time machining data application and service based on IMT digital twin," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1113-1132, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Ktari & Mohamed El Mansori, 2022. "Digital twin of functional gating system in 3D printed molds for sand casting using a neural network," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 897-909, March.
    2. Aniket Nagargoje & Pavan Kumar Kankar & Prashant Kumar Jain & Puneet Tandon, 2023. "Application of artificial intelligence techniques in incremental forming: a state-of-the-art review," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 985-1002, March.
    3. Ayman AboElHassan & Soumaya Yacout, 2023. "A digital shadow framework using distributed system concepts," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3579-3598, December.
    4. Zengya Zhao & Sibao Wang & Zehua Wang & Shilong Wang & Chi Ma & Bo Yang, 2022. "Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: a case study in five-axis machining," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 943-952, April.
    5. Chi Ma & Hongquan Gui & Jialan Liu, 2023. "Self learning-empowered thermal error control method of precision machine tools based on digital twin," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 695-717, February.
    6. Bettiol, Marco & Capestro, Mauro & Di Maria, Eleonora & Ganau, Roberto, 2024. "Is this time different?: how Industry 4.0 affects firms' labor productivity," LSE Research Online Documents on Economics 124545, London School of Economics and Political Science, LSE Library.
    7. Benjamin Lutz & Dominik Kisskalt & Andreas Mayr & Daniel Regulin & Matteo Pantano & Jörg Franke, 2021. "In-situ identification of material batches using machine learning for machining operations," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1485-1495, June.
    8. Marco Bettiol & Mauro Capestro & Eleonora Di Maria & Roberto Ganau, 2024. "Is this time different? How Industry 4.0 affects firms’ labor productivity," Small Business Economics, Springer, vol. 62(4), pages 1449-1467, April.
    9. Georgios Falekas & Athanasios Karlis, 2021. "Digital Twin in Electrical Machine Control and Predictive Maintenance: State-of-the-Art and Future Prospects," Energies, MDPI, vol. 14(18), pages 1-26, September.
    10. PengYu Wang & Wen-An Yang & YouPeng You, 2023. "A cyber-physical prototype system in augmented reality using RGB-D camera for CNC machining simulation," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3637-3658, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:7:d:10.1007_s10845-023-02195-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.