A quality improvement method for complex component fine manufacturing based on terminal laser beam deflection compensation
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-022-02048-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yilin Guo & Wen Feng Lu & Jerry Ying Hsi Fuh, 2021. "Semi-supervised deep learning based framework for assessing manufacturability of cellular structures in direct metal laser sintering process," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 347-359, February.
- Sudipto Chaki & Ravi N. Bathe & Sujit Ghosal & G. Padmanabham, 2018. "Multi-objective optimisation of pulsed Nd:YAG laser cutting process using integrated ANN–NSGAII model," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 175-190, January.
- Yanxi Zhang & Deyong You & Xiangdong Gao & Congyi Wang & Yangjin Li & Perry P. Gao, 2020. "Real-time monitoring of high-power disk laser welding statuses based on deep learning framework," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 799-814, April.
- Filippo Simoni & Andrea Huxol & Franz-Josef Villmer, 2021. "Improving surface quality in selective laser melting based tool making," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1927-1938, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ammar H. Elsheikh & Taher A. Shehabeldeen & Jianxin Zhou & Ezzat Showaib & Mohamed Abd Elaziz, 2021. "Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1377-1388, June.
- Thinh Quy Duc Pham & Truong Vinh Hoang & Xuan Tran & Quoc Tuan Pham & Seifallah Fetni & Laurent Duchêne & Hoang Son Tran & Anne-Marie Habraken, 2023. "Fast and accurate prediction of temperature evolutions in additive manufacturing process using deep learning," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1701-1719, April.
- Christian Spreafico & Davide Russo & Riccardo Degl’Innocenti, 2022. "Laser pyrolysis in papers and patents," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 353-385, February.
- Zhen Zhang & Zenan Yang & Chenchong Wang & Wei Xu, 2024. "Accelerating ultrashort pulse laser micromachining process comprehensive optimization using a machine learning cycle design strategy integrated with a physical model," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 449-465, January.
- Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
- Deyuan Ma & Ping Jiang & Leshi Shu & Zhaoliang Gong & Yilin Wang & Shaoning Geng, 2024. "Online porosity prediction in laser welding of aluminum alloys based on a multi-fidelity deep learning framework," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 55-73, January.
- Xingguo Wang & Tianyun Chen & Yiming Wang & Dongliang Zheng & Xiaoyu Chen & Zhuang Zhao, 2023. "The 3D narrow butt weld seam detection system based on the binocular consistency correction," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2321-2332, June.
- You-Shyang Chen & Jieh-Ren Chang & Ying-Hsun Hung & Jia-Hsien Lai, 2023. "Oversampling Application of Identifying 3D Selective Laser Sintering Yield by Hybrid Mathematical Classification Models," Mathematics, MDPI, vol. 11(14), pages 1-30, July.
More about this item
Keywords
Terminal laser beam; Deflection compensation; Complex component; 3D vision; Laser fine manufacturing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:1:d:10.1007_s10845-022-02048-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.