IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i7d10.1007_s10845-018-1411-1.html
   My bibliography  Save this article

Optimizing human–robot task allocation using a simulation tool based on standardized work descriptions

Author

Listed:
  • Timo Bänziger

    (Smart Production Lab)

  • Andreas Kunz

    (ETH Zürich)

  • Konrad Wegener

    (ETH Zürich)

Abstract

Human–robot collaboration is enabled by the digitization of production and has become a key technology for the factory of the future. It combines the strengths of both the human worker and the assistant robot and allows the implementation of an varying degree of automation in workplaces in order to meet the increasing demand of flexibility of manufacturing systems. Intelligent planning and control algorithms are needed for the organization of the work in hybrid teams of humans and robots. This paper introduces an approach to use standardized work description for automated procedure generation of mobile assistant robots. A simulation tool is developed that implements the procedure model and is therefore capable of calculating different objective parameters like production time or ergonomics during a production cycle as a function of the human–robot task allocation. The simulation is validated with an existing workplace in an assembly line at the Volkswagen plant in Wolfsburg, Germany. Furthermore, a new method is presented to optimize the task allocation in human–robot teams for a given workplace, using the simulation as fitness function in a genetic algorithm. The advantage of this new approach is the possibility to evaluate different distributions of the tasks, while considering the dynamics of the interaction between the worker and the robot in their shared workplace. Using the presented approach for a given workplace, an optimized human–robot task allocation is found, in which the tasks are allocated in an intelligent and comprehensible way.

Suggested Citation

  • Timo Bänziger & Andreas Kunz & Konrad Wegener, 2020. "Optimizing human–robot task allocation using a simulation tool based on standardized work descriptions," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1635-1648, October.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:7:d:10.1007_s10845-018-1411-1
    DOI: 10.1007/s10845-018-1411-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-1411-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-1411-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Izabela Nielsen & Quang-Vinh Dang & Grzegorz Bocewicz & Zbigniew Banaszak, 2017. "A methodology for implementation of mobile robot in adaptive manufacturing environments," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1171-1188, June.
    2. Andrew Kusiak, 2017. "Smart manufacturing must embrace big data," Nature, Nature, vol. 544(7648), pages 23-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Boschetti & Matteo Bottin & Maurizio Faccio & Riccardo Minto, 2021. "Multi-robot multi-operator collaborative assembly systems: a performance evaluation model," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1455-1470, June.
    2. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2021. "Scheduling Human-Robot Teams in collaborative working cells," International Journal of Production Economics, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    2. Maximilian Zarte & Agnes Pechmann & Isabel L. Nunes, 2022. "Problems, Needs, and Challenges of a Sustainability-Based Production Planning," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    3. Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
    4. Wang, Di & He, Bin & Hu, Zhimu, 2024. "Financial technology and firm productivity: Evidence from Chinese listed enterprises," Finance Research Letters, Elsevier, vol. 63(C).
    5. Wang, Linhui & Chen, Qi & Dong, Zhiqing & Cheng, Lu, 2024. "The role of industrial intelligence in peaking carbon emissions in China," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    6. Guo, Daqiang & Li, Mingxing & Lyu, Zhongyuan & Kang, Kai & Wu, Wei & Zhong, Ray Y. & Huang, George Q., 2021. "Synchroperation in industry 4.0 manufacturing," International Journal of Production Economics, Elsevier, vol. 238(C).
    7. Shiguang Li & Yixiang Tian, 2023. "How Does Digital Transformation Affect Total Factor Productivity: Firm-Level Evidence from China," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    8. Wei Fang & Lianyu Zheng, 2020. "Shop floor data-driven spatial–temporal verification for manual assembly planning," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1003-1018, April.
    9. Mingxing Li & Ray Y. Zhong & Ting Qu & George Q. Huang, 2022. "Spatial–temporal out-of-order execution for advanced planning and scheduling in cyber-physical factories," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1355-1372, June.
    10. Zhe Li & Yi Wang & Kesheng Wang, 2020. "A data-driven method based on deep belief networks for backlash error prediction in machining centers," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1693-1705, October.
    11. Chaohong Na & Xue Chen & Xiaojun Li & Yuting Li & Xiaolan Wang, 2022. "Digital Transformation of Value Chains and CSR Performance," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    12. Morett, Emilio & Tappia, Elena & Melacini, Marco, 2021. "Scheduling mobile robots in part feeding systems," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 129-149, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    13. Xifan Yao & Nanfeng Ma & Jianming Zhang & Kesai Wang & Erfu Yang & Maurizio Faccio, 2024. "Enhancing wisdom manufacturing as industrial metaverse for industry and society 5.0," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 235-255, January.
    14. Li, Mingxing & Huang, George Q., 2021. "Production-intralogistics synchronization of industry 4.0 flexible assembly lines under graduation intelligent manufacturing system," International Journal of Production Economics, Elsevier, vol. 241(C).
    15. Andrew Kusiak, 2019. "Editorial: Intelligent manufacturing: bridging two centuries," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 1-2, January.
    16. Yixiao Zhao & Yihai He & Fengdi Liu & Xiao Han & Anqi Zhang & Di Zhou & Yao Li, 2020. "Operational risk modeling based on operational data fusion for multi-state manufacturing systems," Journal of Risk and Reliability, , vol. 234(2), pages 407-421, April.
    17. Anja Poberznik & Mirka Leino & Jenni Huhtasalo & Taina Jyräkoski & Pauli Valo & Tommi Lehtinen & Joonas Kortelainen & Sari Merilampi & Johanna Virkki, 2021. "Mobile Robots and RFID Technology-Based Smart Care Environment for Minimizing Risks Related to Employee Turnover during Pandemics," Sustainability, MDPI, vol. 13(22), pages 1-12, November.
    18. Wei Ji & Shubin Yin & Lihui Wang, 2019. "A big data analytics based machining optimisation approach," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1483-1495, March.
    19. Zeng, Huixiang & Ran, Hangxin & Zhou, Qiong & Jin, Youliang & Cheng, Xu, 2022. "The financial effect of firm digitalization: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    20. Yanning Sun & Wei Qin & Zilong Zhuang & Hongwei Xu, 2021. "An adaptive fault detection and root-cause analysis scheme for complex industrial processes using moving window KPCA and information geometric causal inference," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 2007-2021, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:7:d:10.1007_s10845-018-1411-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.