IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v27y2016i6d10.1007_s10845-014-0945-0.html
   My bibliography  Save this article

A metaheuristic for fast machining error compensation

Author

Listed:
  • Roman Stryczek

    (University of Bielsko-Biala)

Abstract

In case of complex parts machining or multi-directional machining in multi-part fixtures the error compensation in multi-dimensional decision space poses a difficult problem. The article focuses on the limitation of defective products by means of systematic increase of the remaining error budget due to correction of the setup data. A vectorial equation for machine tool space description is presented. The development of geometric dimensioning and tolerancing scheme to the levels connected with the setup data is proposed. The optimization algorithm used here is based on the paradigm particle swarm optimization (PSO), but it includes a few significant modifications inspired by the growth of the coral reef thus the name of the method—coral reefs inspired particle swarm optimization (CRIPSO). CRIPSO has been compared with three other popular metaheuristics: classic PSO, genetic algorithm, and cuckoo optimization algorithm. There is a practical example in this article.

Suggested Citation

  • Roman Stryczek, 2016. "A metaheuristic for fast machining error compensation," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1209-1220, December.
  • Handle: RePEc:spr:joinma:v:27:y:2016:i:6:d:10.1007_s10845-014-0945-0
    DOI: 10.1007/s10845-014-0945-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-014-0945-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-014-0945-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Li & Yi Wang & Kesheng Wang, 2020. "A data-driven method based on deep belief networks for backlash error prediction in machining centers," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1693-1705, October.
    2. Dayuan Wu & Ping Yan & You Guo & Han Zhou & Jian Chen, 2022. "A gear machining error prediction method based on adaptive Gaussian mixture regression considering stochastic disturbance," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2321-2339, December.
    3. Antonio Caputi & Davide Russo, 2021. "The optimization of the control logic of a redundant six axis milling machine," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1441-1453, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:27:y:2016:i:6:d:10.1007_s10845-014-0945-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.