IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i2d10.1007_s10845-018-1446-3.html
   My bibliography  Save this article

Ontology-based module selection in the design of reconfigurable machine tools

Author

Listed:
  • Zhenjun Ming

    (Beijing Institute of Technology)

  • Cong Zeng

    (Beijing Institute of Technology)

  • Guoxin Wang

    (Beijing Institute of Technology)

  • Jia Hao

    (Beijing Institute of Technology)

  • Yan Yan

    (Beijing Institute of Technology)

Abstract

Reconfigurable machine tools (RMTs) are important equipment for enterprises to cope with ever-changing markets because of their flexibility. In design of such equipment, selection of appropriate modules is a very critical decision factor to effectively and efficiently satisfy manufacturing requirements. However, the selection of appropriate modules is a challenging task because it is a multi-domain mapping process relying heavily on experts’ domain knowledge, which is usually unstructured and implicit. To effectively support RMT designers, an ontology-based RMT module selection method is proposed. First, a knowledge base is built by development of an ontology to formally represent the taxonomy, properties, and causal relationships of/among three domain core concepts, namely, machining feature, machining operation, and RMT module involved in RMT design. Second, a four-step sequential procedure is established to facilitate the utilization of encoded knowledge from a knowledge base to aid in the selection of appropriate RMT modules. The procedure takes a given part family as the input, automatically infers the required machining operations as well as the RMT modules through rule-based reasoning, and eventually forms a set of RMT configurations that are capable of machining the part family as the output. Finally, the efficacy of the ontology-based RMT module selection method is demonstrated using a plate family manufacturing example. Results show that the approach is effective to support designers by appropriately and rapidly selecting modules and generating configurations in RMT design.

Suggested Citation

  • Zhenjun Ming & Cong Zeng & Guoxin Wang & Jia Hao & Yan Yan, 2020. "Ontology-based module selection in the design of reconfigurable machine tools," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 301-317, February.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:2:d:10.1007_s10845-018-1446-3
    DOI: 10.1007/s10845-018-1446-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-1446-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-1446-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claire Palmer & Esmond N. Urwin & Ali Niknejad & Dobrila Petrovic & Keith Popplewell & Robert I. M. Young, 2018. "An ontology supported risk assessment approach for the intelligent configuration of supply networks," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1005-1030, June.
    2. Sihan Huang & Guoxin Wang & Xiwen Shang & Yan Yan, 2018. "Reconfiguration point decision method based on dynamic complexity for reconfigurable manufacturing system (RMS)," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1031-1043, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuming Guo, 2023. "Towards the efficient generation of variant design in product development networks: network nodes importance based product configuration evaluation approach," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 615-631, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sihan Huang & Guoxin Wang & Shiqi Nie & Bin Wang & Yan Yan, 2023. "Part family formation method for delayed reconfigurable manufacturing system based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2849-2863, August.
    2. Slim Zidi & Nadia Hamani & Lyes Kermad, 2022. "New metrics for measuring supply chain reconfigurability," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2371-2392, December.
    3. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    4. Germán Herrera Vidal & Jairo R. Coronado-Hernández & Claudia Minnaard, 2023. "Measuring manufacturing system complexity: a literature review," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2865-2888, October.
    5. Yuming Guo, 2023. "Towards the efficient generation of variant design in product development networks: network nodes importance based product configuration evaluation approach," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 615-631, February.
    6. D.-Y. Kim & J.-W. Park & S. Baek & K.-B. Park & H.-R. Kim & J.-I. Park & H.-S. Kim & B.-B. Kim & H.-Y. Oh & K. Namgung & W. Baek, 2020. "A modular factory testbed for the rapid reconfiguration of manufacturing systems," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 661-680, March.
    7. Kim, Byung-Cheol, 2022. "Multi-factor dependence modelling with specified marginals and structured association in large-scale project risk assessment," European Journal of Operational Research, Elsevier, vol. 296(2), pages 679-695.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:2:d:10.1007_s10845-018-1446-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.