Part family formation method for delayed reconfigurable manufacturing system based on machine learning
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-022-01956-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Aurelio Montalto & Serena Graziosi & Monica Bordegoni & Luca Di Landro & Michael Johannes Leonardus Tooren, 2020. "An approach to design reconfigurable manufacturing tools to manage product variability: the mass customisation of eyewear," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 87-102, January.
- Amro M. Farid, 2017. "Measures of reconfigurability and its key characteristics in intelligent manufacturing systems," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 353-369, February.
- Sihan Huang & Guoxin Wang & Yan Yan, 2019. "Delayed reconfigurable manufacturing system," International Journal of Production Research, Taylor & Francis Journals, vol. 57(8), pages 2372-2391, April.
- Yoram Koren & Xi Gu & Weihong Guo, 2018. "Choosing the system configuration for high-volume manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 476-490, January.
- Omar Ezzat & Khaled Medini & Xavier Boucher & Xavier Delorme, 2022. "A clustering approach for modularizing service-oriented systems," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 719-734, March.
- Berna H. Ulutas, 2019. "An immune system based algorithm for cell formation problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2835-2852, December.
- Xifan Yao & Jiajun Zhou & Yingzi Lin & Yun Li & Hongnian Yu & Ying Liu, 2019. "Smart manufacturing based on cyber-physical systems and beyond," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2805-2817, December.
- Sihan Huang & Yan Yan, 2019. "Part family grouping method for reconfigurable manufacturing system considering process time and capacity demand," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 424-445, June.
- Leandro Gauss & Daniel P. Lacerda & Paulo A. Cauchick Miguel, 2021. "Module-based product family design: systematic literature review and meta-synthesis," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 265-312, January.
- Pai Zheng & Xun Xu & Chun-Hsien Chen, 2020. "A data-driven cyber-physical approach for personalised smart, connected product co-development in a cloud-based environment," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 3-18, January.
- Sihan Huang & Guoxin Wang & Xiwen Shang & Yan Yan, 2018. "Reconfiguration point decision method based on dynamic complexity for reconfigurable manufacturing system (RMS)," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1031-1043, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
- D.-Y. Kim & J.-W. Park & S. Baek & K.-B. Park & H.-R. Kim & J.-I. Park & H.-S. Kim & B.-B. Kim & H.-Y. Oh & K. Namgung & W. Baek, 2020. "A modular factory testbed for the rapid reconfiguration of manufacturing systems," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 661-680, March.
- Wai Sze Yip & Suet To & Hongting Zhou, 2022. "Current status, challenges and opportunities of sustainable ultra-precision manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2193-2205, December.
- Shuting Wang & Jie Meng & Yuanlong Xie & Liquan Jiang & Han Ding & Xinyu Shao, 2023. "Reference training system for intelligent manufacturing talent education: platform construction and curriculum development," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1125-1164, March.
- Xiaobao Zhu & Jing Shi & Fengjie Xie & Rouqi Song, 2020. "Pricing strategy and system performance in a cloud-based manufacturing system built on blockchain technology," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1985-2002, December.
- Cosmin Aron & Fabio Sgarbossa & Eric Ballot & Dmitry Ivanov, 2024. "Cloud material handling systems: a cyber-physical system to enable dynamic resource allocation and digital interoperability," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 3815-3836, December.
- Yongjun Ji & Zuhua Jiang & Xinyu Li & Yongwen Huang & Fuhua Wang, 2023. "A multitask context-aware approach for design lesson-learned knowledge recommendation in collaborative product design," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1615-1637, April.
- Dolgui, Alexandre & Hashemi-Petroodi, S. Ehsan & Kovalev, Sergey & Kovalyov, Mikhail Y., 2021. "Profitability of a multi-model manufacturing line versus multiple dedicated lines," International Journal of Production Economics, Elsevier, vol. 236(C).
- Weiya Chen & Shiying Tong & Ziyue Yuan & Xiaoping Fang, 2024. "Module Configuration of Rail Freight Transportation with Both Customer Segmentation and Product Family Genealogy in China," Mathematics, MDPI, vol. 12(24), pages 1-17, December.
- Weckenborg, Christian & Schumacher, Patrick & Thies, Christian & Spengler, Thomas S., 2024. "Flexibility in manufacturing system design: A review of recent approaches from Operations Research," European Journal of Operational Research, Elsevier, vol. 315(2), pages 413-441.
- Camélia Dadouchi & Bruno Agard, 2021. "Recommender systems as an agility enabler in supply chain management," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1229-1248, June.
- Gauss, Leandro & Lacerda, Daniel P. & Cauchick Miguel, Paulo A., 2022. "Market-Driven Modularity: Design method developed under a Design Science paradigm," International Journal of Production Economics, Elsevier, vol. 246(C).
- Hien Nguyen Ngoc & Ganix Lasa & Ion Iriarte, 2022. "Human-centred design in industry 4.0: case study review and opportunities for future research," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 35-76, January.
- Germán Herrera Vidal & Jairo R. Coronado-Hernández & Claudia Minnaard, 2023. "Measuring manufacturing system complexity: a literature review," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2865-2888, October.
- Han Cheng & Xianguang Kong & Qibin Wang & Hongbo Ma & Shengkang Yang & Gaige Chen, 2023. "Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 587-613, February.
- Benjamin Lutz & Dominik Kisskalt & Andreas Mayr & Daniel Regulin & Matteo Pantano & Jörg Franke, 2021. "In-situ identification of material batches using machine learning for machining operations," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1485-1495, June.
- Jorge L. Alonso-Perez & Selene L. Cardenas-Maciel & Balter Trujillo-Navarrete & Edgar A. Reynoso-Soto & Nohe R. Cazarez-Cazarez, 2022. "An approach for designing smart manufacturing for the research and development of dye-sensitize solar cell," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2307-2320, December.
- Rui Liu, 2023. "An edge-based algorithm for tool wear monitoring in repetitive milling processes," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2333-2343, June.
- Xifan Yao & Nanfeng Ma & Jianming Zhang & Kesai Wang & Erfu Yang & Maurizio Faccio, 2024. "Enhancing wisdom manufacturing as industrial metaverse for industry and society 5.0," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 235-255, January.
- Simon Micheler & Yee Mey Goh & Niels Lohse, 2021. "A transformation of human operation approach to inform system design for automation," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 201-220, January.
More about this item
Keywords
Delayed reconfigurable manufacturing system; Part family formation; Similarity coefficient; Machine learning; K-medoids;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:6:d:10.1007_s10845-022-01956-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.