IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i6d10.1007_s10845-022-01956-7.html
   My bibliography  Save this article

Part family formation method for delayed reconfigurable manufacturing system based on machine learning

Author

Listed:
  • Sihan Huang

    (Beijing Institute of Technology)

  • Guoxin Wang

    (Beijing Institute of Technology)

  • Shiqi Nie

    (Beijing Institute of Technology)

  • Bin Wang

    (China Academy of Launch Vehicle Technology)

  • Yan Yan

    (Beijing Institute of Technology)

Abstract

Delayed reconfigurable manufacturing system (D-RMS), a subclass of reconfigurable manufacturing system (RMS), were proposed to solve the convertibility problems of RMS. As a part family-oriented manufacturing system paradigm, D-RMS should concern delayed reconfiguration at the outset of part family formation. To bring the characteristics of delayed reconfiguration into the part family of D-RMS, an exclusive part family formation method for D-RMS based on machine learning is proposed in this paper. Firstly, a similarity coefficient that considers the characteristics of D-RMS is put forward based on the operation sequence of part. The positions of the common operations in the corresponding operation sequences are investigated. The more former common operations there are, the more probability it is that the parts are grouped into the same part family. The relative positions of the common operations are considered by proposing a concept of the longest relative position common operation subsequence (LPCS). Additionally, the position difference and discontinuity of the LPCSs in the corresponding operation sequences are analyzed. A similarity coefficient is proposed that incorporates the abovementioned factors. Secondly, a machine learning method named K-medoids is adopted to group parts into families based on the calculation result of the similarity coefficient. Finally, a case study is presented to implement the proposed part family formation method for D-RMS, where the effectiveness of the proposed method is verified through comparison.

Suggested Citation

  • Sihan Huang & Guoxin Wang & Shiqi Nie & Bin Wang & Yan Yan, 2023. "Part family formation method for delayed reconfigurable manufacturing system based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2849-2863, August.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:6:d:10.1007_s10845-022-01956-7
    DOI: 10.1007/s10845-022-01956-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01956-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01956-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aurelio Montalto & Serena Graziosi & Monica Bordegoni & Luca Di Landro & Michael Johannes Leonardus Tooren, 2020. "An approach to design reconfigurable manufacturing tools to manage product variability: the mass customisation of eyewear," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 87-102, January.
    2. Amro M. Farid, 2017. "Measures of reconfigurability and its key characteristics in intelligent manufacturing systems," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 353-369, February.
    3. Sihan Huang & Guoxin Wang & Yan Yan, 2019. "Delayed reconfigurable manufacturing system," International Journal of Production Research, Taylor & Francis Journals, vol. 57(8), pages 2372-2391, April.
    4. Yoram Koren & Xi Gu & Weihong Guo, 2018. "Choosing the system configuration for high-volume manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 476-490, January.
    5. Omar Ezzat & Khaled Medini & Xavier Boucher & Xavier Delorme, 2022. "A clustering approach for modularizing service-oriented systems," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 719-734, March.
    6. Berna H. Ulutas, 2019. "An immune system based algorithm for cell formation problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2835-2852, December.
    7. Xifan Yao & Jiajun Zhou & Yingzi Lin & Yun Li & Hongnian Yu & Ying Liu, 2019. "Smart manufacturing based on cyber-physical systems and beyond," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2805-2817, December.
    8. Sihan Huang & Yan Yan, 2019. "Part family grouping method for reconfigurable manufacturing system considering process time and capacity demand," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 424-445, June.
    9. Leandro Gauss & Daniel P. Lacerda & Paulo A. Cauchick Miguel, 2021. "Module-based product family design: systematic literature review and meta-synthesis," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 265-312, January.
    10. Pai Zheng & Xun Xu & Chun-Hsien Chen, 2020. "A data-driven cyber-physical approach for personalised smart, connected product co-development in a cloud-based environment," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 3-18, January.
    11. Sihan Huang & Guoxin Wang & Xiwen Shang & Yan Yan, 2018. "Reconfiguration point decision method based on dynamic complexity for reconfigurable manufacturing system (RMS)," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1031-1043, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D.-Y. Kim & J.-W. Park & S. Baek & K.-B. Park & H.-R. Kim & J.-I. Park & H.-S. Kim & B.-B. Kim & H.-Y. Oh & K. Namgung & W. Baek, 2020. "A modular factory testbed for the rapid reconfiguration of manufacturing systems," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 661-680, March.
    2. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    3. Wai Sze Yip & Suet To & Hongting Zhou, 2022. "Current status, challenges and opportunities of sustainable ultra-precision manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2193-2205, December.
    4. Federica Murmura & Laura Bravi & Gilberto Santos, 2021. "Sustainable Process and Product Innovation in the Eyewear Sector: The Role of Industry 4.0 Enabling Technologies," Sustainability, MDPI, vol. 13(1), pages 1-16, January.
    5. Shuting Wang & Jie Meng & Yuanlong Xie & Liquan Jiang & Han Ding & Xinyu Shao, 2023. "Reference training system for intelligent manufacturing talent education: platform construction and curriculum development," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1125-1164, March.
    6. Xiaobao Zhu & Jing Shi & Fengjie Xie & Rouqi Song, 2020. "Pricing strategy and system performance in a cloud-based manufacturing system built on blockchain technology," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1985-2002, December.
    7. Yuming Guo, 2023. "Towards the efficient generation of variant design in product development networks: network nodes importance based product configuration evaluation approach," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 615-631, February.
    8. Yongjun Ji & Zuhua Jiang & Xinyu Li & Yongwen Huang & Fuhua Wang, 2023. "A multitask context-aware approach for design lesson-learned knowledge recommendation in collaborative product design," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1615-1637, April.
    9. Dolgui, Alexandre & Hashemi-Petroodi, S. Ehsan & Kovalev, Sergey & Kovalyov, Mikhail Y., 2021. "Profitability of a multi-model manufacturing line versus multiple dedicated lines," International Journal of Production Economics, Elsevier, vol. 236(C).
    10. Weckenborg, Christian & Schumacher, Patrick & Thies, Christian & Spengler, Thomas S., 2024. "Flexibility in manufacturing system design: A review of recent approaches from Operations Research," European Journal of Operational Research, Elsevier, vol. 315(2), pages 413-441.
    11. Camélia Dadouchi & Bruno Agard, 2021. "Recommender systems as an agility enabler in supply chain management," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1229-1248, June.
    12. Ateekh Ur Rehman & Syed Hammad Mian & Usama Umer & Yusuf Siraj Usmani, 2019. "Strategic Outcome Using Fuzzy-AHP-Based Decision Approach for Sustainable Manufacturing," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
    13. Constantin Aurelian Ionescu & Melinda Timea Fülöp & Dan Ioan Topor & Sorinel Căpușneanu & Teodora Odett Breaz & Sorina Geanina Stănescu & Mihaela Denisa Coman, 2021. "The New Era of Business Digitization through the Implementation of 5G Technology in Romania," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    14. Gauss, Leandro & Lacerda, Daniel P. & Cauchick Miguel, Paulo A., 2022. "Market-Driven Modularity: Design method developed under a Design Science paradigm," International Journal of Production Economics, Elsevier, vol. 246(C).
    15. Hien Nguyen Ngoc & Ganix Lasa & Ion Iriarte, 2022. "Human-centred design in industry 4.0: case study review and opportunities for future research," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 35-76, January.
    16. Germán Herrera Vidal & Jairo R. Coronado-Hernández & Claudia Minnaard, 2023. "Measuring manufacturing system complexity: a literature review," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2865-2888, October.
    17. Han Cheng & Xianguang Kong & Qibin Wang & Hongbo Ma & Shengkang Yang & Gaige Chen, 2023. "Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 587-613, February.
    18. Bashir Salah & Mustufa Haider Abidi & Syed Hammad Mian & Mohammed Krid & Hisham Alkhalefah & Ali Abdo, 2019. "Virtual Reality-Based Engineering Education to Enhance Manufacturing Sustainability in Industry 4.0," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    19. Benjamin Lutz & Dominik Kisskalt & Andreas Mayr & Daniel Regulin & Matteo Pantano & Jörg Franke, 2021. "In-situ identification of material batches using machine learning for machining operations," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1485-1495, June.
    20. Jorge L. Alonso-Perez & Selene L. Cardenas-Maciel & Balter Trujillo-Navarrete & Edgar A. Reynoso-Soto & Nohe R. Cazarez-Cazarez, 2022. "An approach for designing smart manufacturing for the research and development of dye-sensitize solar cell," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2307-2320, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:6:d:10.1007_s10845-022-01956-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.