IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i2d10.1007_s10845-018-1424-9.html
   My bibliography  Save this article

Profile monitoring based quality control method for fused deposition modeling process

Author

Listed:
  • Ketai He

    (University of Science and Technology Beijing)

  • Qian Zhang

    (University of Science and Technology Beijing)

  • Yili Hong

    (Virginia Tech)

Abstract

In order to monitor the quality of parts in printing, the methodology to monitor the geometric quality of the printed parts in fused deposition modeling process is researched. A non-contact measurement method based on machine vision technology is adopted to obtain the precise complete geometric information. An image acquisition system is established to capture the image of each layer of the part in building and image processing technology is used to obtain the geometric profile information. With the above information, statistical process control method is applied to monitor the geometric quality of the parts during the printing process. Firstly, a border signature method is applied to transform complex geometry into a simple distance-angle function to get the profile deviation data. Secondly, monitoring of the profile deviation data based on profile monitoring method is studied and applied to achieve the goal of layer-to-layer monitoring. In the research, quantile-quantile plot method is used to transform the profile deviation point cloud data monitoring problem into a linear profile relationship monitoring problem and EWMA control charts are established to monitor the parameters of the linear relationship to detect shifts occurred in the Fused Deposition Modeling process. Finally, laboratory experiments are conducted to demonstrate the effectiveness of the proposed approach.

Suggested Citation

  • Ketai He & Qian Zhang & Yili Hong, 2019. "Profile monitoring based quality control method for fused deposition modeling process," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 947-958, February.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-018-1424-9
    DOI: 10.1007/s10845-018-1424-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-1424-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-1424-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ketai He & Min Zhang & Ling Zuo & Theyab Alhwiti & Fadel M. Megahed, 2017. "Enhancing the monitoring of 3D scanned manufactured parts through projections and spatiotemporal control charts," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 899-911, April.
    2. Qiang Huang & Jizhe Zhang & Arman Sabbaghi & Tirthankar Dasgupta, 2015. "Optimal offline compensation of shape shrinkage for three-dimensional printing processes," IISE Transactions, Taylor & Francis Journals, vol. 47(5), pages 431-441, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Douglas A. J. Brion & Sebastian W. Pattinson, 2022. "Generalisable 3D printing error detection and correction via multi-head neural networks," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Tingting Huang & Shanggang Wang & Shunkun Yang & Wei Dai, 2021. "Statistical process monitoring in a specified period for the image data of fused deposition modeling parts with consistent layers," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2181-2196, December.
    3. Lee J. Wells & Romina Dastoorian & Jaime A. Camelio, 2021. "A novel NURBS surface approach to statistically monitor manufacturing processes with point cloud data," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 329-345, February.
    4. Antonio Caputi & Davide Russo, 2021. "The optimization of the control logic of a redundant six axis milling machine," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1441-1453, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee J. Wells & Romina Dastoorian & Jaime A. Camelio, 2021. "A novel NURBS surface approach to statistically monitor manufacturing processes with point cloud data," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 329-345, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-018-1424-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.