IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i2d10.1007_s10845-017-1297-3.html
   My bibliography  Save this article

An adaptive approach for determining batch sizes using the hidden Markov model

Author

Listed:
  • Taejong Joo

    (Hanyang University)

  • Minji Seo

    (Hanyang University)

  • Dongmin Shin

    (Hanyang University)

Abstract

Determining an optimal batch size is one of the most classic problems in manufacturing systems and operations research. A typical approach is to construct and solve mathematical models of a batch size under several assumptions and constraints in terms of time, cost, or quality. In spite of the partly success in somewhat static processes, wherein the system variability does not change as the process runs, recent proliferation of data-driven process analysis techniques offers a new way of determining batch sizes. Taking into account for dynamic changes in variability in the middle of the process, we suggest a model to determine batch size which can adapt to changes in the process variability using the hidden Markov model which exploits sequence of product quality data obtained points of recalibration dynamically by continuously predicting the level of process variability which is inherent in a system but is unknown explicitly. The proposed model enables to determine points of recalibration dynamically by continuously predicting the level of process variability which is inherent in a system but is unknown explicitly. For the illustrative purpose, a system which consists of a material handler and a machining processor is considered and numerical experiments are conducted. It is shown that the proposed model can be useful in determining batch sizes while assuring desired product quality level as well.

Suggested Citation

  • Taejong Joo & Minji Seo & Dongmin Shin, 2019. "An adaptive approach for determining batch sizes using the hidden Markov model," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 917-932, February.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-017-1297-3
    DOI: 10.1007/s10845-017-1297-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-017-1297-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-017-1297-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmad, Shabbir & Riaz, Muhammad & Abbasi, Saddam Akber & Lin, Zhengyan, 2013. "On monitoring process variability under double sampling scheme," International Journal of Production Economics, Elsevier, vol. 142(2), pages 388-400.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, S.L. & Khoo, Michael B.C. & Teoh, W.L. & Xie, M., 2015. "Optimal designs of the variable sample size and sampling interval X¯ chart when process parameters are estimated," International Journal of Production Economics, Elsevier, vol. 166(C), pages 20-35.
    2. Guoyi Zhang, 2014. "Improved R and s control charts for monitoring the process variance," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1260-1273, June.
    3. Iziy Azamsadat & Sadeghpour Gildeh Bahram & Monabbati Ehsan, 2017. "Comparison Between the Economic-Statistical Design of Double and Triple Sampling X¯\bar{X} Control Charts," Stochastics and Quality Control, De Gruyter, vol. 32(1), pages 49-61, June.
    4. Khoo, Michael B.C. & Teoh, W.L. & Castagliola, Philippe & Lee, M.H., 2013. "Optimal designs of the double sampling X¯ chart with estimated parameters," International Journal of Production Economics, Elsevier, vol. 144(1), pages 345-357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-017-1297-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.