IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v29y2018i8d10.1007_s10845-016-1216-z.html
   My bibliography  Save this article

An ACO-based hyperheuristic with dynamic decision blocks for intercell scheduling

Author

Listed:
  • Yunna Tian

    (Beijing Institute of Technology
    Yan’an University)

  • Dongni Li

    (Beijing Institute of Technology)

  • Pengyu Zhou

    (Beijing Institute of Technology)

  • Rongtao Guo

    (Beijing Institute of Technology)

  • Zhaohe Liu

    (Beijing Institute of Technology)

Abstract

In real production of equipment manufacturing industry, coordination between cells is needed. Intercell scheduling therefore comes into being. In this paper, a limited intercell transportation capacity constraint is taken into consideration, a hyperheuristic is proposed, which employs ant colony optimization to select appropriate heuristic rules for production scheduling and transportation scheduling. Moreover, dynamic decision blocks are introduced to the hyperheuristic to make a better balance between optimization performance and computation efficiency. Computational results show that, as compared with other approaches, the proposed approach performs much better with respect to minimizing total weighted tardiness while retaining low computational costs, and it is especially suitable for the problems with large sizes.

Suggested Citation

  • Yunna Tian & Dongni Li & Pengyu Zhou & Rongtao Guo & Zhaohe Liu, 2018. "An ACO-based hyperheuristic with dynamic decision blocks for intercell scheduling," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1905-1921, December.
  • Handle: RePEc:spr:joinma:v:29:y:2018:i:8:d:10.1007_s10845-016-1216-z
    DOI: 10.1007/s10845-016-1216-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-016-1216-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-016-1216-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ari P. J. Vepsalainen & Thomas E. Morton, 1987. "Priority Rules for Job Shops with Weighted Tardiness Costs," Management Science, INFORMS, vol. 33(8), pages 1035-1047, August.
    2. Edmund K Burke & Michel Gendreau & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & Rong Qu, 2013. "Hyper-heuristics: a survey of the state of the art," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1695-1724, December.
    3. Solimanpur, Maghsud & Elmi, Atabak, 2013. "A tabu search approach for cell scheduling problem with makespan criterion," International Journal of Production Economics, Elsevier, vol. 141(2), pages 639-645.
    4. Yang, Taho & Kuo, Yiyo & Cho, Chiwoon, 2007. "A genetic algorithms simulation approach for the multi-attribute combinatorial dispatching decision problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1859-1873, February.
    5. Dongni Li & Xianwen Meng & Miao Li & Yunna Tian, 2016. "An ACO-based intercell scheduling approach for job shop cells with multiple single processing machines and one batch processing machine," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 283-296, April.
    6. Sarper, H. & Henry, M. C., 1996. "Combinatorial evaluation of six dispatching rules in a dynamic two-machine flow shop," Omega, Elsevier, vol. 24(1), pages 73-81, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuo, Yiyo & Yang, Taho & Cho, Chiwoon & Tseng, Yao-Ching, 2008. "Using simulation and multi-criteria methods to provide robust solutions to dispatching problems in a flow shop with multiple processors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(1), pages 40-56.
    2. Pickardt, Christoph W. & Hildebrandt, Torsten & Branke, Jürgen & Heger, Jens & Scholz-Reiter, Bernd, 2013. "Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems," International Journal of Production Economics, Elsevier, vol. 145(1), pages 67-77.
    3. Ahmed Kheiri & Alina G. Dragomir & David Mueller & Joaquim Gromicho & Caroline Jagtenberg & Jelke J. Hoorn, 2019. "Tackling a VRP challenge to redistribute scarce equipment within time windows using metaheuristic algorithms," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 561-595, December.
    4. Andrzej Kozik, 2017. "Handling precedence constraints in scheduling problems by the sequence pair representation," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 445-472, February.
    5. Ilkyeong Moon & Sanghyup Lee & Moonsoo Shin & Kwangyeol Ryu, 2016. "Evolutionary resource assignment for workload-based production scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 375-388, April.
    6. W. B. Yates & E. C. Keedwell, 2019. "An analysis of heuristic subsequences for offline hyper-heuristic learning," Journal of Heuristics, Springer, vol. 25(3), pages 399-430, June.
    7. Derya Deliktaş, 2022. "Self-adaptive memetic algorithms for multi-objective single machine learning-effect scheduling problems with release times," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 748-784, September.
    8. Alidaee, Bahram & Kochenberger, Gary A. & Amini, Mohammad M., 2001. "Greedy solutions of selection and ordering problems," European Journal of Operational Research, Elsevier, vol. 134(1), pages 203-215, October.
    9. S. David Wu & Eui-Seok Byeon & Robert H. Storer, 1999. "A Graph-Theoretic Decomposition of the Job Shop Scheduling Problem to Achieve Scheduling Robustness," Operations Research, INFORMS, vol. 47(1), pages 113-124, February.
    10. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    11. Surafel Luleseged Tilahun & Mohamed A. Tawhid, 2019. "Swarm hyperheuristic framework," Journal of Heuristics, Springer, vol. 25(4), pages 809-836, October.
    12. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    13. Venkatesh Pandiri & Alok Singh, 2020. "Two multi-start heuristics for the k-traveling salesman problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1164-1204, December.
    14. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    15. M. Vimala Rani & M. Mathirajan, 2020. "Performance evaluation of due-date based dispatching rules in dynamic scheduling of diffusion furnace," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 462-512, June.
    16. Yang, Taho & Kuo, Yiyo & Cho, Chiwoon, 2007. "A genetic algorithms simulation approach for the multi-attribute combinatorial dispatching decision problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1859-1873, February.
    17. Li, Wenwen & Özcan, Ender & John, Robert, 2017. "Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation," Renewable Energy, Elsevier, vol. 105(C), pages 473-482.
    18. Jari Kyngäs & Kimmo Nurmi & Nico Kyngäs & George Lilley & Thea Salter & Dries Goossens, 2017. "Scheduling the Australian Football League," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 973-982, August.
    19. Wu, Lingxiao & Wang, Shuaian, 2018. "Exact and heuristic methods to solve the parallel machine scheduling problem with multi-processor tasks," International Journal of Production Economics, Elsevier, vol. 201(C), pages 26-40.
    20. Sara Ceschia & Rosita Guido & Andrea Schaerf, 2020. "Solving the static INRC-II nurse rostering problem by simulated annealing based on large neighborhoods," Annals of Operations Research, Springer, vol. 288(1), pages 95-113, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:29:y:2018:i:8:d:10.1007_s10845-016-1216-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.