IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v27y2016i6d10.1007_s10845-014-0949-9.html
   My bibliography  Save this article

Using a diffusion wavelet neural network for short-term time series learning in the wafer level chip scale package process

Author

Listed:
  • Der-Chiang Li

    (National Cheng Kung University)

  • Chun-Wu Yeh

    (Kun Shan University)

  • Chieh-Chih Chen

    (National Cheng Kung University)

  • Hung-Ta Shih

    (National Cheng Kung University)

Abstract

Wafer level chip scale packages (WLCSP) have the advantages of high efficiency, high power and high density, and can ensure the consistent printed circuit board assembly necessary to achieve high yield and reliability. WLCSP are attracting more attention as electronic devices continue to become smaller and more portable. Although this package technology can enhance electronic signal input/output density, there is often the problem of a low yield in the early stage of its introduction. Several manufacturing factors influence the packaging process, with the height of the solder balls on multilayer metallic film being the decisive one. Due to the very few samples produced in pilot runs in the early stages of new product development, statistical process control charts can only provide limited information. This study is based on the idea of timeline division, and proposes a diffusion wavelet neural network which uses the correlated virtual sample generating method to improve its predictive performance for short-term time series. The diffusion wavelet neural network can improve the predictive accuracy more effectively than either a back-propagation neural network or a grey-based forecasting method.

Suggested Citation

  • Der-Chiang Li & Chun-Wu Yeh & Chieh-Chih Chen & Hung-Ta Shih, 2016. "Using a diffusion wavelet neural network for short-term time series learning in the wafer level chip scale package process," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1261-1272, December.
  • Handle: RePEc:spr:joinma:v:27:y:2016:i:6:d:10.1007_s10845-014-0949-9
    DOI: 10.1007/s10845-014-0949-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-014-0949-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-014-0949-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yao-San & Li, Der-Chiang, 2010. "The Generalized-Trend-Diffusion modeling algorithm for small data sets in the early stages of manufacturing systems," European Journal of Operational Research, Elsevier, vol. 207(1), pages 121-130, November.
    2. Li, Der-Chang & Lin, Yao-San, 2006. "Using virtual sample generation to build up management knowledge in the early manufacturing stages," European Journal of Operational Research, Elsevier, vol. 175(1), pages 413-434, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Der-Chiang & Lin, Liang-Sian, 2013. "A new approach to assess product lifetime performance for small data sets," European Journal of Operational Research, Elsevier, vol. 230(2), pages 290-298.
    2. Che-Jung Chang & Liping Yu & Peng Jin, 2016. "A mega-trend-diffusion grey forecasting model for short-term manufacturing demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1439-1445, December.
    3. Yawen Wang & Shihua Zhang, 2023. "Prediction of Tumor Lymph Node Metastasis Using Wasserstein Distance-Based Generative Adversarial Networks Combing with Neural Architecture Search for Predicting," Mathematics, MDPI, vol. 11(3), pages 1-14, February.
    4. He, Yan-Lin & Wang, Ping-Jiang & Zhang, Ming-Qing & Zhu, Qun-Xiong & Xu, Yuan, 2018. "A novel and effective nonlinear interpolation virtual sample generation method for enhancing energy prediction and analysis on small data problem: A case study of Ethylene industry," Energy, Elsevier, vol. 147(C), pages 418-427.
    5. Lin, Yao-San & Li, Der-Chiang, 2010. "The Generalized-Trend-Diffusion modeling algorithm for small data sets in the early stages of manufacturing systems," European Journal of Operational Research, Elsevier, vol. 207(1), pages 121-130, November.
    6. Li, Der-Chiang & Lin, Yao-San, 2008. "Learning management knowledge for manufacturing systems in the early stages using time series data," European Journal of Operational Research, Elsevier, vol. 184(1), pages 169-184, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:27:y:2016:i:6:d:10.1007_s10845-014-0949-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.