Prediction of Tumor Lymph Node Metastasis Using Wasserstein Distance-Based Generative Adversarial Networks Combing with Neural Architecture Search for Predicting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Li, Der-Chang & Lin, Yao-San, 2006. "Using virtual sample generation to build up management knowledge in the early manufacturing stages," European Journal of Operational Research, Elsevier, vol. 175(1), pages 413-434, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Minhyeok Lee, 2023. "Recent Advances in Generative Adversarial Networks for Gene Expression Data: A Comprehensive Review," Mathematics, MDPI, vol. 11(14), pages 1-26, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Yan-Lin & Wang, Ping-Jiang & Zhang, Ming-Qing & Zhu, Qun-Xiong & Xu, Yuan, 2018. "A novel and effective nonlinear interpolation virtual sample generation method for enhancing energy prediction and analysis on small data problem: A case study of Ethylene industry," Energy, Elsevier, vol. 147(C), pages 418-427.
- Li, Der-Chiang & Lin, Liang-Sian, 2013. "A new approach to assess product lifetime performance for small data sets," European Journal of Operational Research, Elsevier, vol. 230(2), pages 290-298.
- Der-Chiang Li & Chun-Wu Yeh & Chieh-Chih Chen & Hung-Ta Shih, 2016. "Using a diffusion wavelet neural network for short-term time series learning in the wafer level chip scale package process," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1261-1272, December.
- Lin, Yao-San & Li, Der-Chiang, 2010. "The Generalized-Trend-Diffusion modeling algorithm for small data sets in the early stages of manufacturing systems," European Journal of Operational Research, Elsevier, vol. 207(1), pages 121-130, November.
- Li, Der-Chiang & Lin, Yao-San, 2008. "Learning management knowledge for manufacturing systems in the early stages using time series data," European Journal of Operational Research, Elsevier, vol. 184(1), pages 169-184, January.
More about this item
Keywords
lncRNA; generative adversarial network; neural architecture search; lymph node metastasis; deep learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:729-:d:1053597. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.