IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p729-d1053597.html
   My bibliography  Save this article

Prediction of Tumor Lymph Node Metastasis Using Wasserstein Distance-Based Generative Adversarial Networks Combing with Neural Architecture Search for Predicting

Author

Listed:
  • Yawen Wang

    (School of Mathematics and Physics, China University of Geosciences, 388 Lumo Road, Hongshan District, Wuhan 430074, China
    These authors contributed equally to this work.)

  • Shihua Zhang

    (College of Life Science and Health, Wuhan University of Science and Technology, 974 Heping Avenue, Qingshan District, Wuhan 430081, China
    These authors contributed equally to this work.)

Abstract

Long non-coding RNAs (lncRNAs) play an important role in development and gene expression and can be used as genetic indicators for cancer prediction. Generally, lncRNA expression profiles tend to have small sample sizes with large feature sizes; therefore, insufficient data, especially the imbalance of positive and negative samples, often lead to inaccurate prediction results. In this study, we developed a predictor WGAN-psoNN, constructed with the Wasserstein distance-based generative adversarial network (WGAN) and particle swarm optimization neural network (psoNN) algorithms to predict lymph node metastasis events in tumors by using lncRNA expression profiles. To overcome the complicated manual parameter adjustment process, this is the first time the neural network architecture search (NAS) method has been used to automatically set network parameters and predict lymph node metastasis events via deep learning. In addition, the algorithm makes full use of the advantages of WGAN to generate samples to solve the problem of imbalance between positive and negative samples in the data set. On the other hand, by constructing multiple GAN networks, Wasserstein distance was used to select the optimal sample generation. Comparative experiments were conducted on eight representative cancer-related lncRNA expression profile datasets; the prediction results demonstrate the effectiveness and robustness of the newly proposed method. Thus, the model dramatically reduces the requirement for deep learning for data quantity and the difficulty of architecture selection and has the potential to be applied to other classification problems.

Suggested Citation

  • Yawen Wang & Shihua Zhang, 2023. "Prediction of Tumor Lymph Node Metastasis Using Wasserstein Distance-Based Generative Adversarial Networks Combing with Neural Architecture Search for Predicting," Mathematics, MDPI, vol. 11(3), pages 1-14, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:729-:d:1053597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Der-Chang & Lin, Yao-San, 2006. "Using virtual sample generation to build up management knowledge in the early manufacturing stages," European Journal of Operational Research, Elsevier, vol. 175(1), pages 413-434, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minhyeok Lee, 2023. "Recent Advances in Generative Adversarial Networks for Gene Expression Data: A Comprehensive Review," Mathematics, MDPI, vol. 11(14), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yan-Lin & Wang, Ping-Jiang & Zhang, Ming-Qing & Zhu, Qun-Xiong & Xu, Yuan, 2018. "A novel and effective nonlinear interpolation virtual sample generation method for enhancing energy prediction and analysis on small data problem: A case study of Ethylene industry," Energy, Elsevier, vol. 147(C), pages 418-427.
    2. Li, Der-Chiang & Lin, Liang-Sian, 2013. "A new approach to assess product lifetime performance for small data sets," European Journal of Operational Research, Elsevier, vol. 230(2), pages 290-298.
    3. Der-Chiang Li & Chun-Wu Yeh & Chieh-Chih Chen & Hung-Ta Shih, 2016. "Using a diffusion wavelet neural network for short-term time series learning in the wafer level chip scale package process," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1261-1272, December.
    4. Lin, Yao-San & Li, Der-Chiang, 2010. "The Generalized-Trend-Diffusion modeling algorithm for small data sets in the early stages of manufacturing systems," European Journal of Operational Research, Elsevier, vol. 207(1), pages 121-130, November.
    5. Li, Der-Chiang & Lin, Yao-San, 2008. "Learning management knowledge for manufacturing systems in the early stages using time series data," European Journal of Operational Research, Elsevier, vol. 184(1), pages 169-184, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:729-:d:1053597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.