IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v27y2016i4d10.1007_s10845-014-0911-x.html
   My bibliography  Save this article

Continuous prediction of manufacturing performance throughout the production lifecycle

Author

Listed:
  • Sholom M. Weiss

    (IBM Research)

  • Amit Dhurandhar

    (IBM Research)

  • Robert J. Baseman

    (IBM Research)

  • Brian F. White

    (IBM Research)

  • Ronald Logan

    (IBM Microelectronics)

  • Jonathan K. Winslow

    (IBM Microelectronics)

  • Daniel Poindexter

    (IBM Microelectronics)

Abstract

We describe methods for continual prediction of manufactured product quality prior to final testing. In our most expansive modeling approach, an estimated final characteristic of a product is updated after each manufacturing operation. Our initial application is for the manufacture of microprocessors, and we predict final microprocessor speed. Using these predictions, early corrective manufacturing actions may be taken to increase the speed of expected slow wafers (a collection of microprocessors) or reduce the speed of fast wafers. Such predictions may also be used to initiate corrective supply chain management actions. Developing statistical learning models for this task has many complicating factors: (a) a temporally unstable population (b) missing data that is a result of sparsely sampled measurements and (c) relatively few available measurements prior to corrective action opportunities. In a real manufacturing pilot application, our automated models selected 125 fast wafers in real-time. As predicted, those wafers were significantly faster than average. During manufacture, downstream corrective processing restored 25 nominally unacceptable wafers to normal operation.

Suggested Citation

  • Sholom M. Weiss & Amit Dhurandhar & Robert J. Baseman & Brian F. White & Ronald Logan & Jonathan K. Winslow & Daniel Poindexter, 2016. "Continuous prediction of manufacturing performance throughout the production lifecycle," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 751-763, August.
  • Handle: RePEc:spr:joinma:v:27:y:2016:i:4:d:10.1007_s10845-014-0911-x
    DOI: 10.1007/s10845-014-0911-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-014-0911-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-014-0911-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenyu Liu & Donghao Zhang & Weiqiang Jia & Xianke Lin & Hui Liu, 2020. "An adversarial bidirectional serial–parallel LSTM-based QTD framework for product quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1511-1529, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:27:y:2016:i:4:d:10.1007_s10845-014-0911-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.