IDEAS home Printed from https://ideas.repec.org/a/spr/joiaen/v7y2018i1d10.1186_s13731-018-0090-7.html
   My bibliography  Save this article

Empirical study on innovation motivators and inhibitors of Internet of Things applications for industrial manufacturing enterprises

Author

Listed:
  • Timon B. Heinis

    (ETH Zurich, Product Development Group Zurich)

  • Jan Hilario

    (University of Zurich)

  • Mirko Meboldt

    (ETH Zurich, Product Development Group Zurich)

Abstract

Industrial manufacturing enterprises in export-oriented economies rely on product or service innovation to maintain their competitive advantage. Decreasing costs of computing power, connectivity and electronic components have facilitated a wide range of innovations based on Internet of Things (IoT) applications. However, only few successful IoT applications specific to industrial manufacturing enterprises are known. Although academics have been investigating challenges related to realising IoT, existing literature does not explain this situation integrally. Therefore, interest and engagement in and motivators and inhibitors of IoT application development and deployment are investigated based on a literature review and empirically based on a survey with N=109 participants from enterprises in the Swiss metal, electrical and machine industries. Most enterprises are interested and are often engaged in IoT application development. Improving service and aftersales activities through IoT applications is a common motivator. Inhibitors from four domains hinder the development of IoT applications: business, organisational, technological and industrial. Business and organisational inhibitors are perceived to be more challenging than the technological and industrial ones. The business and organisational issues presented herein have essential impacts on the success of innovation in IoT applications. The results indicate future research directions for the innovation and development of IoT applications, and they can be used by organisations interested in IoT-based innovations to refine policy and decision-making.

Suggested Citation

  • Timon B. Heinis & Jan Hilario & Mirko Meboldt, 2018. "Empirical study on innovation motivators and inhibitors of Internet of Things applications for industrial manufacturing enterprises," Journal of Innovation and Entrepreneurship, Springer, vol. 7(1), pages 1-22, December.
  • Handle: RePEc:spr:joiaen:v:7:y:2018:i:1:d:10.1186_s13731-018-0090-7
    DOI: 10.1186/s13731-018-0090-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s13731-018-0090-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1186/s13731-018-0090-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saarikko, Ted & Westergren, Ulrika H. & Blomquist, Tomas, 2017. "The Internet of Things: Are you ready for what’s coming?," Business Horizons, Elsevier, vol. 60(5), pages 667-676.
    2. Lee, In & Lee, Kyoochun, 2015. "The Internet of Things (IoT): Applications, investments, and challenges for enterprises," Business Horizons, Elsevier, vol. 58(4), pages 431-440.
    3. Louis Raymond & Sylvestre Uwizeyemungu & Bruno Fabi & Josée St-Pierre, 2018. "IT capabilities for product innovation in SMEs: a configurational approach," Information Technology and Management, Springer, vol. 19(1), pages 75-87, March.
    4. Felix Wortmann & Kristina Flüchter, 2015. "Internet of Things," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 57(3), pages 221-224, June.
    5. Nagy Hanna, 2018. "A role for the state in the digital age," Journal of Innovation and Entrepreneurship, Springer, vol. 7(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Kruger & Adriana Aletta Steyn, 2020. "Enhancing technology transfer through entrepreneurial development: practices from innovation spaces," The Journal of Technology Transfer, Springer, vol. 45(6), pages 1655-1689, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akhtar, Pervaiz & Khan, Zaheer & Tarba, Shlomo & Jayawickrama, Uchitha, 2018. "The Internet of Things, dynamic data and information processing capabilities, and operational agility," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 307-316.
    2. Saarikko, Ted & Westergren, Ulrika H. & Blomquist, Tomas, 2020. "Digital transformation: Five recommendations for the digitally conscious firm," Business Horizons, Elsevier, vol. 63(6), pages 825-839.
    3. Cranmer, Eleanor E. & Papalexi, M. & tom Dieck, M. Claudia & Bamford, D., 2022. "Internet of Things: Aspiration, implementation and contribution," Journal of Business Research, Elsevier, vol. 139(C), pages 69-80.
    4. Sarah Bayer & Henner Gimpel & Daniel Rau, 2021. "IoT-commerce - opportunities for customers through an affordance lens," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(1), pages 27-50, March.
    5. Hamilton, R.H. & Sodeman, William A., 2020. "The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources," Business Horizons, Elsevier, vol. 63(1), pages 85-95.
    6. Nozari Hamed & Fallah Mohammad & Szmelter-Jarosz Agnieszka & Krzemiński Maciej, 2021. "Analysis of Security Criteria for IoT-Based Supply Chain: A Case Study of FMCG Industries," Journal of Management and Business Administration. Central Europe, Sciendo, vol. 29(4), pages 149-171, December.
    7. Alexandros Nikitas & Kalliopi Michalakopoulou & Eric Tchouamou Njoya & Dimitris Karampatzakis, 2020. "Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    8. Payam Hanafizadeh & Parastou Hatami & Morteza Analoui & Amir Albadvi, 2021. "Business model innovation driven by the internet of things technology, in internet service providers’ business context," Information Systems and e-Business Management, Springer, vol. 19(4), pages 1175-1243, December.
    9. Eric Forcael & Isabella Ferrari & Alexander Opazo-Vega & Jesús Alberto Pulido-Arcas, 2020. "Construction 4.0: A Literature Review," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    10. Rymaszewska, Anna & Helo, Petri & Gunasekaran, Angappa, 2017. "IoT powered servitization of manufacturing – an exploratory case study," International Journal of Production Economics, Elsevier, vol. 192(C), pages 92-105.
    11. Rawhi Alrae & Qassim Nasir & Manar Abu Talib, 2020. "Developing House of Information Quality framework for IoT systems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1294-1313, December.
    12. Gimpel, Gregory, 2020. "Bringing dark data into the light: Illuminating existing IoT data lost within your organization," Business Horizons, Elsevier, vol. 63(4), pages 519-530.
    13. Marietheres Dietz & Günther Pernul, 2020. "Digital Twin: Empowering Enterprises Towards a System-of-Systems Approach," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(2), pages 179-184, April.
    14. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    15. Athanasios Tsipis & Asterios Papamichail & Ioannis Angelis & George Koufoudakis & Georgios Tsoumanis & Konstantinos Oikonomou, 2020. "An Alertness-Adjustable Cloud/Fog IoT Solution for Timely Environmental Monitoring Based on Wildfire Risk Forecasting," Energies, MDPI, vol. 13(14), pages 1-35, July.
    16. Bent Flyvbjerg & Alexander Budzier & Jong Seok Lee & Mark Keil & Daniel Lunn & Dirk W. Bester, 2022. "The Empirical Reality of IT Project Cost Overruns: Discovering A Power-Law Distribution," Papers 2210.01573, arXiv.org.
    17. Uwizeyemungu, Sylvestre & Poba-Nzaou, Placide & St-Pierre, Josée, 2022. "Back-end information technology resources and manufacturing SMEs’ export commitment: An empirical investigation," International Business Review, Elsevier, vol. 31(5).
    18. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    19. Uddin, Md Hamid & Mollah, Sabur & Islam, Nazrul & Ali, Md Hakim, 2023. "Does digital transformation matter for operational risk exposure?," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    20. Kumar, V. & Ramachandran, Divya & Kumar, Binay, 2021. "Influence of new-age technologies on marketing: A research agenda," Journal of Business Research, Elsevier, vol. 125(C), pages 864-877.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joiaen:v:7:y:2018:i:1:d:10.1186_s13731-018-0090-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.