IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v22y2016i5d10.1007_s10732-016-9314-9.html
   My bibliography  Save this article

Roster evaluation based on classifiers for the nurse rostering problem

Author

Listed:
  • Roman Václavík

    (Czech Technical University in Prague)

  • Přemysl Šůcha

    (Czech Technical University in Prague)

  • Zdeněk Hanzálek

    (Czech Technical University in Prague
    Czech Technical University in Prague)

Abstract

The personnel scheduling problem is a well-known NP-hard combinatorial problem. Due to the complexity of this problem and the size of the real-world instances, it is not possible to use exact methods, and thus heuristics, meta-heuristics, or hyper-heuristics must be employed. The majority of heuristic approaches are based on iterative search, where the quality of intermediate solutions must be calculated. Unfortunately, this is computationally highly expensive because these problems have many constraints and some are very complex. In this study, we propose a machine learning technique as a tool to accelerate the evaluation phase in heuristic approaches. The solution is based on a simple classifier, which is able to determine whether the changed solution (more precisely, the changed part of the solution) is better than the original or not. This decision is made much faster than a standard cost-oriented evaluation process. However, the classification process cannot guarantee 100 % correctness. Therefore, our approach, which is illustrated using a tabu search algorithm in this study, includes a filtering mechanism, where the classifier rejects the majority of the potentially bad solutions and the remaining solutions are then evaluated in a standard manner. We also show how the boosting algorithms can improve the quality of the final solution compared with a simple classifier. We verified our proposed approach and premises, based on standard and real-world benchmark instances, to demonstrate the significant speedup obtained with comparable solution quality.

Suggested Citation

  • Roman Václavík & Přemysl Šůcha & Zdeněk Hanzálek, 2016. "Roster evaluation based on classifiers for the nurse rostering problem," Journal of Heuristics, Springer, vol. 22(5), pages 667-697, October.
  • Handle: RePEc:spr:joheur:v:22:y:2016:i:5:d:10.1007_s10732-016-9314-9
    DOI: 10.1007/s10732-016-9314-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-016-9314-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-016-9314-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dowsland, Kathryn A., 1998. "Nurse scheduling with tabu search and strategic oscillation," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 393-407, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouška, Michal & Šůcha, Přemysl & Novák, Antonín & Hanzálek, Zdeněk, 2023. "Deep learning-driven scheduling algorithm for a single machine problem minimizing the total tardiness," European Journal of Operational Research, Elsevier, vol. 308(3), pages 990-1006.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vanhoucke, Mario & Maenhout, Broos, 2009. "On the characterization and generation of nurse scheduling problem instances," European Journal of Operational Research, Elsevier, vol. 196(2), pages 457-467, July.
    2. Beddoe, Gareth R. & Petrovic, Sanja, 2006. "Selecting and weighting features using a genetic algorithm in a case-based reasoning approach to personnel rostering," European Journal of Operational Research, Elsevier, vol. 175(2), pages 649-671, December.
    3. Jeffrey H. Kingston, 2016. "Repairing high school timetables with polymorphic ejection chains," Annals of Operations Research, Springer, vol. 239(1), pages 119-134, April.
    4. Eyjólfur Ingi Ásgeirsson & Guðríður Lilla Sigurðardóttir, 2016. "Near-optimal MIP solutions for preference based self-scheduling," Annals of Operations Research, Springer, vol. 239(1), pages 273-293, April.
    5. Eyjólfur Ásgeirsson, 2014. "Bridging the gap between self schedules and feasible schedules in staff scheduling," Annals of Operations Research, Springer, vol. 218(1), pages 51-69, July.
    6. Dellaert, Nico & Jeunet, Jully & Mincsovics, Gergely, 2011. "Budget allocation for permanent and contingent capacity under stochastic demand," International Journal of Production Economics, Elsevier, vol. 131(1), pages 128-138, May.
    7. Edmund Burke & Jingpeng Li & Rong Qu, 2012. "A Pareto-based search methodology for multi-objective nurse scheduling," Annals of Operations Research, Springer, vol. 196(1), pages 91-109, July.
    8. J P Oddoye & M A Yaghoobi & M Tamiz & D F Jones & P Schmidt, 2007. "A multi-objective model to determine efficient resource levels in a medical assessment unit," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1563-1573, December.
    9. P R Harper & N H Powell & J E Williams, 2010. "Modelling the size and skill-mix of hospital nursing teams," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 768-779, May.
    10. Farasat, Alireza & Nikolaev, Alexander G., 2016. "Signed social structure optimization for shift assignment in the nurse scheduling problem," Socio-Economic Planning Sciences, Elsevier, vol. 56(C), pages 3-13.
    11. Topaloglu, Seyda, 2009. "A shift scheduling model for employees with different seniority levels and an application in healthcare," European Journal of Operational Research, Elsevier, vol. 198(3), pages 943-957, November.
    12. Blochliger, Ivo, 2004. "Modeling staff scheduling problems. A tutorial," European Journal of Operational Research, Elsevier, vol. 158(3), pages 533-542, November.
    13. Chiaramonte, Michael V. & Chiaramonte, Laurel M., 2008. "An agent-based nurse rostering system under minimal staffing conditions," International Journal of Production Economics, Elsevier, vol. 114(2), pages 697-713, August.
    14. Tom Rihm & Philipp Baumann, 2018. "Staff assignment with lexicographically ordered acceptance levels," Journal of Scheduling, Springer, vol. 21(2), pages 167-189, April.
    15. Hadi W. Purnomo & Jonathan F. Bard, 2007. "Cyclic preference scheduling for nurses using branch and price," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(2), pages 200-220, March.
    16. Frederik Knust & Lin Xie, 2019. "Simulated annealing approach to nurse rostering benchmark and real-world instances," Annals of Operations Research, Springer, vol. 272(1), pages 187-216, January.
    17. Ezzah Suraya Sarudin & Wan Nor Munirah Ariffin & Siti Suhana Jamaian, 2024. "Mapping the Landscape: A Bibliometric Analysis of Staff Scheduling Optimization Research Trends and Keywords Evolution," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(8), pages 358-372, August.
    18. Brucker, Peter & Qu, Rong & Burke, Edmund, 2011. "Personnel scheduling: Models and complexity," European Journal of Operational Research, Elsevier, vol. 210(3), pages 467-473, May.
    19. Sana Bouajaja & Najoua Dridi, 2017. "A survey on human resource allocation problem and its applications," Operational Research, Springer, vol. 17(2), pages 339-369, July.
    20. Eveborn, Patrik & Flisberg, Patrik & Ronnqvist, Mikael, 2006. "Laps Care--an operational system for staff planning of home care," European Journal of Operational Research, Elsevier, vol. 171(3), pages 962-976, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:22:y:2016:i:5:d:10.1007_s10732-016-9314-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.