A nested family of $$\varvec{k}$$ k -total effective rewards for positional games
Author
Abstract
Suggested Citation
DOI: 10.1007/s00182-016-0532-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Endre Boros & Khaled Elbassioni & Vladimir Gurvich & Kazuhisa Makino, 2013. "On Canonical Forms for Zero-Sum Stochastic Mean Payoff Games," Dynamic Games and Applications, Springer, vol. 3(2), pages 128-161, June.
- N. N. Pisaruk, 1999. "Mean Cost Cyclical Games," Mathematics of Operations Research, INFORMS, vol. 24(4), pages 817-828, November.
- F. Thuijsman & O. J. Vrieze, 1998. "Total Reward Stochastic Games and Sensitive Average Reward Strategies," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 175-196, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Endre Boros & Khaled Elbassioni & Vladimir Gurvich & Kazuhisa Makino, 2013. "On Canonical Forms for Zero-Sum Stochastic Mean Payoff Games," Dynamic Games and Applications, Springer, vol. 3(2), pages 128-161, June.
- Boros, E. & Gurvich, V., 2003. "On Nash-solvability in pure stationary strategies of finite games with perfect information which may have cycles," Mathematical Social Sciences, Elsevier, vol. 46(2), pages 207-241, October.
- Endre Boros & Khaled Elbassioni & Vladimir Gurvich & Kazuhisa Makino, 2018. "A Potential Reduction Algorithm for Two-Person Zero-Sum Mean Payoff Stochastic Games," Dynamic Games and Applications, Springer, vol. 8(1), pages 22-41, March.
- Endre Boros & Paolo Giulio Franciosa & Vladimir Gurvich & Michael Vyalyi, 2024. "Deterministic n-person shortest path and terminal games on symmetric digraphs have Nash equilibria in pure stationary strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(2), pages 449-473, June.
- S. K. Neogy & Prasenjit Mondal & Abhijit Gupta & Debasish Ghorui, 2018. "On Solving Mean Payoff Games Using Pivoting Algorithms," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-26, October.
More about this item
Keywords
Stochastic game with perfect information; Cyclic games; Two-person; Zero-sum; Mean payoff; Total reward;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:46:y:2017:i:1:d:10.1007_s00182-016-0532-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.