IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v46y2003i2p207-241.html
   My bibliography  Save this article

On Nash-solvability in pure stationary strategies of finite games with perfect information which may have cycles

Author

Listed:
  • Boros, E.
  • Gurvich, V.

Abstract

No abstract is available for this item.

Suggested Citation

  • Boros, E. & Gurvich, V., 2003. "On Nash-solvability in pure stationary strategies of finite games with perfect information which may have cycles," Mathematical Social Sciences, Elsevier, vol. 46(2), pages 207-241, October.
  • Handle: RePEc:eee:matsoc:v:46:y:2003:i:2:p:207-241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-4896(03)00077-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mertens,Jean-François & Sorin,Sylvain & Zamir,Shmuel, 2015. "Repeated Games," Cambridge Books, Cambridge University Press, number 9781107030206, September.
      • Mertens,Jean-François & Sorin,Sylvain & Zamir,Shmuel, 2015. "Repeated Games," Cambridge Books, Cambridge University Press, number 9781107662636, September.
    2. Nicolas Vieille, 2000. "Two-player stochastic games I: A reduction," Post-Print hal-00481401, HAL.
    3. Schwalbe, Ulrich & Walker, Paul, 2001. "Zermelo and the Early History of Game Theory," Games and Economic Behavior, Elsevier, vol. 34(1), pages 123-137, January.
    4. N. N. Pisaruk, 1999. "Mean Cost Cyclical Games," Mathematics of Operations Research, INFORMS, vol. 24(4), pages 817-828, November.
    5. Nicolas Vieille, 2000. "Two-player stochastic games II: The case of recursive games," Post-Print hal-00481416, HAL.
    6. Vrieze, O.J. & Tijs, S.H., 1982. "Fictitious play applied to sequences of games and discounted stochastic games," Other publications TiSEM da21d287-bc00-4a8e-a18f-0, Tilburg University, School of Economics and Management.
    7. Raghavan, T.E.S. & Tijs, S.H. & Vrieze, O.J., 1985. "On stochastic games with additive reward and transition structure," Other publications TiSEM 28f85a14-9a6e-4ed8-9a4b-a, Tilburg University, School of Economics and Management.
    8. Gurvich, V.A. & Golberg, A.I., 1991. "Tight Cyclic Game Forms," UFAE and IAE Working Papers 162.91, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolai Kukushkin, 2011. "Acyclicity of improvements in finite game forms," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 147-177, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rabah Amir & Igor V. Evstigneev & Valeriya Potapova, 2021. "Unbeatable Strategies," Economics Discussion Paper Series 2101, Economics, The University of Manchester, revised Jul 2023.
    2. Robert Samuel Simon, 2012. "A Topological Approach to Quitting Games," Mathematics of Operations Research, INFORMS, vol. 37(1), pages 180-195, February.
    3. Eilon Solan & Nicholas Vieille, 2001. "Quitting Games - An Example," Discussion Papers 1314, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    4. Venel, Xavier, 2021. "Regularity of dynamic opinion games," Games and Economic Behavior, Elsevier, vol. 126(C), pages 305-334.
    5. Solan, Eilon, 2018. "Acceptable strategy profiles in stochastic games," Games and Economic Behavior, Elsevier, vol. 108(C), pages 523-540.
    6. Casilda Lasso de la Vega & Oscar Volij, 2020. "The value of a draw," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1023-1044, November.
    7. Heller, Yuval & Solan, Eilon & Tomala, Tristan, 2012. "Communication, correlation and cheap-talk in games with public information," Games and Economic Behavior, Elsevier, vol. 74(1), pages 222-234.
    8. Eilon Solan & Nicolas Vieille, 2010. "Computing uniformly optimal strategies in two-player stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 237-253, January.
    9. P. Jean-Jacques Herings & Harold Houba, 2022. "Costless delay in negotiations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 74(1), pages 69-93, July.
    10. Renault, Jérôme & Ziliotto, Bruno, 2020. "Hidden stochastic games and limit equilibrium payoffs," Games and Economic Behavior, Elsevier, vol. 124(C), pages 122-139.
    11. Xavier Venel, 2015. "Commutative Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 403-428, February.
    12. Endre Boros & Khaled Elbassioni & Vladimir Gurvich & Kazuhisa Makino, 2013. "On Canonical Forms for Zero-Sum Stochastic Mean Payoff Games," Dynamic Games and Applications, Springer, vol. 3(2), pages 128-161, June.
    13. Walker, Mark & Wooders, John & Amir, Rabah, 2011. "Equilibrium play in matches: Binary Markov games," Games and Economic Behavior, Elsevier, vol. 71(2), pages 487-502, March.
    14. J. Flesch & G. Schoenmakers & O. Vrieze, 2011. "Loss of skills in coordination games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(4), pages 769-789, November.
    15. Jérôme Renault & Bruno Ziliotto, 2020. "Limit Equilibrium Payoffs in Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 889-895, August.
    16. Oscar Volij & Casilda Lasso de la Vega, 2016. "The Value Of A Draw In Quasi-Binary Matches," Working Papers 1601, Ben-Gurion University of the Negev, Department of Economics.
    17. Ewerhart, Christian, 2002. "Backward Induction and the Game-Theoretic Analysis of Chess," Games and Economic Behavior, Elsevier, vol. 39(2), pages 206-214, May.
    18. David Baron & Ehud Kalai, 1990. "Dividing a Cake by Majority: The Simplest Equilibria," Discussion Papers 919, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    19. Flesch, J. & Thuijsman, F. & Vrieze, O.J., 2007. "Stochastic games with additive transitions," European Journal of Operational Research, Elsevier, vol. 179(2), pages 483-497, June.
    20. Heifetz, Aviad & Samet, Dov, 1998. "Topology-Free Typology of Beliefs," Journal of Economic Theory, Elsevier, vol. 82(2), pages 324-341, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:46:y:2003:i:2:p:207-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.