IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v32y2003i1p97-108.html
   My bibliography  Save this article

Borel stay-in-a-set games

Author

Listed:
  • A. Maitra
  • W. Sudderth

Abstract

Consider an n-person stochastic game with Borel state space S, compact metric action sets A 1 ,A 2 ,…,A n , and law of motion q such that the integral under q of every bounded Borel measurable function depends measurably on the initial state x and continuously on the actions (a 1 ,a 2 ,…,a n ) of the players. If the payoff to each player i is 1 or 0 according to whether or not the stochastic process of states stays forever in a given Borel set G i , then there is an ε-equilibrium for every ε>0. Copyright Springer-Verlag 2003

Suggested Citation

  • A. Maitra & W. Sudderth, 2003. "Borel stay-in-a-set games," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(1), pages 97-108, December.
  • Handle: RePEc:spr:jogath:v:32:y:2003:i:1:p:97-108
    DOI: 10.1007/s001820300148
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001820300148
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001820300148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. MERTENS , Jean-François & SORIN , Sylvain & ZAMIR , Shmuel, 1994. "Repeated Games. Part A : Background Material," LIDAM Discussion Papers CORE 1994020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Andrzej Nowak, 2003. "On a new class of nonzero-sum discounted stochastic games having stationary Nash equilibrium points," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(1), pages 121-132, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laraki, Rida & Sorin, Sylvain, 2015. "Advances in Zero-Sum Dynamic Games," Handbook of Game Theory with Economic Applications,, Elsevier.
    2. Ashok P. Maitra & William D. Sudderth, 2007. "Subgame-Perfect Equilibria for Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 711-722, August.
    3. R. Laraki & A. Maitra & W. Sudderth, 2013. "Two-Person Zero-Sum Stochastic Games with Semicontinuous Payoff," Dynamic Games and Applications, Springer, vol. 3(2), pages 162-171, June.
    4. Sylvain Sorin, 2011. "Zero-Sum Repeated Games: Recent Advances and New Links with Differential Games," Dynamic Games and Applications, Springer, vol. 1(1), pages 172-207, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rustichini, A., 1998. "Minimizing Regret : The General Case," Discussion Paper 1998-41, Tilburg University, Center for Economic Research.
    2. Willemien Kets, 2014. "Finite Depth of Reasoning and Equilibrium Play in Games with Incomplete Information," Discussion Papers 1569, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. Heifetz, Aviad & Samet, Dov, 1998. "Topology-Free Typology of Beliefs," Journal of Economic Theory, Elsevier, vol. 82(2), pages 324-341, October.
    4. , & , & ,, 2007. "Interim correlated rationalizability," Theoretical Economics, Econometric Society, vol. 2(1), pages 15-40, March.
    5. Pintér, Miklós & Udvari, Zsolt, 2011. "Generalized type spaces," MPRA Paper 34107, University Library of Munich, Germany.
    6. Balbus, Łukasz & Reffett, Kevin & Woźny, Łukasz, 2013. "A constructive geometrical approach to the uniqueness of Markov stationary equilibrium in stochastic games of intergenerational altruism," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1019-1039.
    7. Shmuel Zamir, 2008. "Bayesian games: Games with incomplete information," Discussion Paper Series dp486, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    8. Yannick Viossat, 2003. "Properties of Dual Reduction," Working Papers hal-00242992, HAL.
    9. Shmuel Zamir, 2008. "Bayesian games: games of incomplete information," Levine's Working Paper Archive 122247000000002215, David K. Levine.
    10. Sylvain Sorin, 2011. "Zero-Sum Repeated Games: Recent Advances and New Links with Differential Games," Dynamic Games and Applications, Springer, vol. 1(1), pages 172-207, March.
    11. Laraki, Rida & Sorin, Sylvain, 2015. "Advances in Zero-Sum Dynamic Games," Handbook of Game Theory with Economic Applications,, Elsevier.
    12. Ganguli, Jayant & Heifetz, Aviad & Lee, Byung Soo, 2016. "Universal interactive preferences," Journal of Economic Theory, Elsevier, vol. 162(C), pages 237-260.
    13. Yannick Viossat, 2010. "Properties and applications of dual reduction," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(1), pages 53-68, July.
    14. Jacquemet, Nicolas & Koessler, Frédéric, 2013. "Using or hiding private information? An experimental study of zero-sum repeated games with incomplete information," Games and Economic Behavior, Elsevier, vol. 78(C), pages 103-120.
    15. Heifetz, Aviad, 2006. "The positive foundation of the common prior assumption," Games and Economic Behavior, Elsevier, vol. 56(1), pages 105-120, July.
    16. John Duggan, 2012. "Noisy Stochastic Games," RCER Working Papers 570, University of Rochester - Center for Economic Research (RCER).
    17. Domansky, V. & Kreps, V., 2011. "Game Theoretic Bidding Model: Strategic Aspects of Price Formation at Stock Markets," Journal of the New Economic Association, New Economic Association, issue 11, pages 39-62.
    18. Nowak, Andrzej S., 2008. "Equilibrium in a dynamic game of capital accumulation with the overtaking criterion," Economics Letters, Elsevier, vol. 99(2), pages 233-237, May.
    19. Barelli, Paulo & Duggan, John, 2014. "A note on semi-Markov perfect equilibria in discounted stochastic games," Journal of Economic Theory, Elsevier, vol. 151(C), pages 596-604.
    20. Wozny Lukasz & Growiec Jakub, 2012. "Intergenerational Interactions in Human Capital Accumulation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 12(1), pages 1-47, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:32:y:2003:i:1:p:97-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.