IDEAS home Printed from https://ideas.repec.org/a/spr/joevec/v33y2023i1d10.1007_s00191-022-00804-4.html
   My bibliography  Save this article

Firms’ influence on the evolution of published knowledge when a science-related technology emerges: the case of artificial intelligence

Author

Listed:
  • Su Jung Jee

    (University of Bradford
    Yonsei University
    University of Oxford)

  • So Young Sohn

    (Yonsei University)

Abstract

Firms with the assets complementary to Artificial Intelligence (AI) have actively conducted AI research and selectively published their results since AI has resurged around 2006. Focusing on the recent AI development, we investigate how and to what extent firms’ deep engagement in the publication of emerging science-related technology can influence the evolution of published knowledge. Using bibliometric analyses applied to the papers in major AI conferences and journals, we find that papers with at least one author affiliated to a firm, and particularly papers with only firm-affiliated author(s), have had higher influence on the formation of published knowledge trajectory than other papers. In addition, papers from firm and non-firm (university and public research institution) collaborations show higher novelty and conventionality than other papers. These findings deepen our understanding of the role of firms in the evolution of emerging science-related technology.

Suggested Citation

  • Su Jung Jee & So Young Sohn, 2023. "Firms’ influence on the evolution of published knowledge when a science-related technology emerges: the case of artificial intelligence," Journal of Evolutionary Economics, Springer, vol. 33(1), pages 209-247, January.
  • Handle: RePEc:spr:joevec:v:33:y:2023:i:1:d:10.1007_s00191-022-00804-4
    DOI: 10.1007/s00191-022-00804-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00191-022-00804-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00191-022-00804-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rothaermel, Frank T. & Thursby, Marie, 2007. "The nanotech versus the biotech revolution: Sources of productivity in incumbent firm research," Research Policy, Elsevier, vol. 36(6), pages 832-849, July.
    2. Christensen, Clayton M. & Rosenbloom, Richard S., 1995. "Explaining the attacker's advantage: Technological paradigms, organizational dynamics, and the value network," Research Policy, Elsevier, vol. 24(2), pages 233-257, March.
    3. Thomas Bolander, 2019. "What do we loose when machines take the decisions?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(4), pages 849-867, December.
    4. Konstantinos Koumpis & Keith Pavitt, 1999. "Corporate Activities In Speech Recognition And Natural Language: Another "New Science"-Based Technology," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 335-366.
    5. Ali Gazni & Fereshteh Didegah, 2011. "Investigating different types of research collaboration and citation impact: a case study of Harvard University’s publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(2), pages 251-265, May.
    6. Jeff S. Armstrong & Michael R. Darby & Lynne G. Zucker, 2003. "Commercializing knowledge: university science, knowledge capture and firm performance in biotechnology," Proceedings, Federal Reserve Bank of Dallas, issue Sep, pages 149-170.
    7. David J. TEECE, 2008. "Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy," World Scientific Book Chapters, in: The Transfer And Licensing Of Know-How And Intellectual Property Understanding the Multinational Enterprise in the Modern World, chapter 5, pages 67-87, World Scientific Publishing Co. Pte. Ltd..
    8. Roberto Fontana & Alessandro Nuvolari & Bart Verspagen, 2009. "Mapping technological trajectories as patent citation networks. An application to data communication standards," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 18(4), pages 311-336.
    9. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    10. Carlsson, B & Stankiewicz, R, 1991. "On the Nature, Function and Composition of Technological Systems," Journal of Evolutionary Economics, Springer, vol. 1(2), pages 93-118, April.
    11. Lundvall, Bengt-Åke & Rikap, Cecilia, 2022. "China's catching-up in artificial intelligence seen as a co-evolution of corporate and national innovation systems," Research Policy, Elsevier, vol. 51(1).
    12. Yin Li & Jan Youtie & Philip Shapira, 2015. "Why do technology firms publish scientific papers? The strategic use of science by small and midsize enterprises in nanotechnology," The Journal of Technology Transfer, Springer, vol. 40(6), pages 1016-1033, December.
    13. Teece, David J., 2018. "Profiting from innovation in the digital economy: Enabling technologies, standards, and licensing models in the wireless world," Research Policy, Elsevier, vol. 47(8), pages 1367-1387.
    14. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    15. Arianna Martinelli & Önder Nomaler, 2014. "Measuring knowledge persistence: a genetic approach to patent citation networks," Journal of Evolutionary Economics, Springer, vol. 24(3), pages 623-652, July.
    16. Didegah, Fereshteh & Thelwall, Mike, 2013. "Which factors help authors produce the highest impact research? Collaboration, journal and document properties," Journal of Informetrics, Elsevier, vol. 7(4), pages 861-873.
    17. repec:wip:wpaper:6 is not listed on IDEAS
    18. Gary P. Pisano, 2010. "The evolution of science-based business: innovating how we innovate," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 19(2), pages 465-482, April.
    19. Hicks, Diana, 1995. "Published Papers, Tacit Competencies and Corporate Management of the Public/Private Character of Knowledge," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 4(2), pages 401-424.
    20. Herbert A. Simon, 1996. "The Sciences of the Artificial, 3rd Edition," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262691914, December.
    21. J. Klinger & J. Mateos-Garcia & K. Stathoulopoulos, 2018. "Deep learning, deep change? Mapping the development of the Artificial Intelligence General Purpose Technology," Papers 1808.06355, arXiv.org.
    22. Jiaying Liu & Jiahao Tian & Xiangjie Kong & Ivan Lee & Feng Xia, 2019. "Two decades of information systems: a bibliometric review," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 617-643, February.
    23. Markus Perkmann & Kathryn Walsh, 2009. "The two faces of collaboration: impacts of university-industry relations on public research," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 18(6), pages 1033-1065, December.
    24. Maureen McKelvey & Bastian Rake, 2020. "Exploring scientific publications by firms: what are the roles of academic and corporate partners for publications in high reputation or high impact journals?," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1323-1360, March.
    25. Antonelli, Cristiano, 2001. "The Microeconomics of Technological Systems," OUP Catalogue, Oxford University Press, number 9780199245536.
    26. Simeth, Markus & Raffo, Julio D., 2013. "What makes companies pursue an Open Science strategy?," Research Policy, Elsevier, vol. 42(9), pages 1531-1543.
    27. Rosenberg, Nathan & Nelson, Richard R., 1994. "American universities and technical advance in industry," Research Policy, Elsevier, vol. 23(3), pages 323-348, May.
    28. Rebecca Henderson, 1993. "Underinvestment and Incompetence as Responses to Radical Innovation: Evidence from the Photolithographic Alignment Equipment Industry," RAND Journal of Economics, The RAND Corporation, vol. 24(2), pages 248-270, Summer.
    29. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    30. Franceschet, Massimo & Costantini, Antonio, 2010. "The effect of scholar collaboration on impact and quality of academic papers," Journal of Informetrics, Elsevier, vol. 4(4), pages 540-553.
    31. Nathan ROSENBERG, 2009. "Why do firms do basic research (with their own money)?," World Scientific Book Chapters, in: Nathan Rosenberg (ed.), Studies On Science And The Innovation Process Selected Works of Nathan Rosenberg, chapter 11, pages 225-234, World Scientific Publishing Co. Pte. Ltd..
    32. Chris Freeman & Luc Soete, 1997. "The Economics of Industrial Innovation, 3rd Edition," MIT Press Books, The MIT Press, edition 3, volume 1, number 0262061953, December.
    33. Katz, J. Sylvan & Martin, Ben R., 1997. "What is research collaboration?," Research Policy, Elsevier, vol. 26(1), pages 1-18, March.
    34. Bornmann, Lutz & Schier, Hermann & Marx, Werner & Daniel, Hans-Dieter, 2012. "What factors determine citation counts of publications in chemistry besides their quality?," Journal of Informetrics, Elsevier, vol. 6(1), pages 11-18.
    35. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su Jung Jee & So Young Sohn, 2023. "A firm’s creation of proprietary knowledge linked to the knowledge spilled over from its research publications: the case of artificial intelligence," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 32(4), pages 876-900.
    2. Ding, Cherng G. & Hung, Wen-Chi & Lee, Meng-Che & Wang, Hung-Jui, 2017. "Exploring paper characteristics that facilitate the knowledge flow from science to technology," Journal of Informetrics, Elsevier, vol. 11(1), pages 244-256.
    3. Rotolo, Daniele & Camerani, Roberto & Grassano, Nicola & Martin, Ben R., 2022. "Why do firms publish? A systematic literature review and a conceptual framework," Research Policy, Elsevier, vol. 51(10).
    4. Roberto Camerani & Daniele Rotolo & Nicola Grassano, 2018. "Do Firms Publish? A Multi-Sectoral Analysis," SPRU Working Paper Series 2018-21, SPRU - Science Policy Research Unit, University of Sussex Business School.
    5. Jong, Simcha & Slavova, Kremena, 2014. "When publications lead to products: The open science conundrum in new product development," Research Policy, Elsevier, vol. 43(4), pages 645-654.
    6. Markus Simeth & Michele Cincera, 2016. "Corporate Science, Innovation, and Firm Value," Management Science, INFORMS, vol. 62(7), pages 1970-1981, July.
    7. Kenneth Zahringer & Christos Kolympiris & Nicholas Kalaitzandonakes, 2017. "Academic knowledge quality differentials and the quality of firm innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(5), pages 821-844.
    8. Leone, Maria Isabella & Messeni Petruzzelli, Antonio & Natalicchio, Angelo, 2022. "Boundary spanning through external technology acquisition: The moderating role of star scientists and upstream alliances," Technovation, Elsevier, vol. 116(C).
    9. Dongqing Lyu & Kaile Gong & Xuanmin Ruan & Ying Cheng & Jiang Li, 2021. "Does research collaboration influence the “disruption” of articles? Evidence from neurosciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 287-303, January.
    10. Antonio Messeni Petruzzelli & Daniele Rotolo & Vito Albino, 2014. "Determinants of Patent Citations in Biotechnology: An Analysis of Patent Influence Across the Industrial and Organizational Boundaries," SPRU Working Paper Series 2014-05, SPRU - Science Policy Research Unit, University of Sussex Business School.
    11. Yin Li & Jan Youtie & Philip Shapira, 2015. "Why do technology firms publish scientific papers? The strategic use of science by small and midsize enterprises in nanotechnology," The Journal of Technology Transfer, Springer, vol. 40(6), pages 1016-1033, December.
    12. Simeth, Markus & Raffo, Julio D., 2013. "What makes companies pursue an Open Science strategy?," Research Policy, Elsevier, vol. 42(9), pages 1531-1543.
    13. Simeth, Markus & Lhuillery, Stephane, 2015. "How do firms develop capabilities for scientific disclosure?," Research Policy, Elsevier, vol. 44(7), pages 1283-1295.
    14. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    15. René Belderbos & Nazareno Braito & Jian Wang, 2024. "Heterogeneous university research and firm R&D location decisions: research orientation, academic quality, and investment type," The Journal of Technology Transfer, Springer, vol. 49(5), pages 1959-1989, October.
    16. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    17. Soh, Pek-Hooi & Subramanian, Annapoornima M., 2014. "When do firms benefit from university–industry R&D collaborations? The implications of firm R&D focus on scientific research and technological recombination," Journal of Business Venturing, Elsevier, vol. 29(6), pages 807-821.
    18. Hyun Ju Jung, 2020. "Recombination sources and breakthrough inventions: university-developed technology versus firm-developed technology," The Journal of Technology Transfer, Springer, vol. 45(4), pages 1121-1166, August.
    19. Sternitzke, Christian, 2010. "Knowledge sources, patent protection, and commercialization of pharmaceutical innovations," Research Policy, Elsevier, vol. 39(6), pages 810-821, July.
    20. Gallego, Jorge & Rubalcaba, Luis & Suárez, Cristina, 2013. "Knowledge for innovation in Europe: The role of external knowledge on firms' cooperation strategies," Journal of Business Research, Elsevier, vol. 66(10), pages 2034-2041.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joevec:v:33:y:2023:i:1:d:10.1007_s00191-022-00804-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.