IDEAS home Printed from https://ideas.repec.org/a/spr/joecth/v8y1996i2p367-376.html
   My bibliography  Save this article

Strategic intergenerational bequests with stochastic convex production

Author

Listed:
  • Rabah Amir

Abstract

This note reconsiders the well-known model of strategic bequest* altruistic growth, but with stochastic production satisfying a strong convexity condition: The probability that the next stock exceeds any given level is concave in investment. Existence of a Markov-stationary equilibrium consumption schedule, which is continuous and with all slopes in [0, 1], is established. Under smooth data and interiority assumptions, this schedule is differentiable, and marginal consumption is in (0, 1). This property allows for a rigorous and straightforward treatment of the equilibrium characterization problem.

Suggested Citation

  • Rabah Amir, 1996. "Strategic intergenerational bequests with stochastic convex production," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(2), pages 367-376.
  • Handle: RePEc:spr:joecth:v:8:y:1996:i:2:p:367-376
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward C. Prescott & Kevin L. Reffett, 2016. "Preface: Special Issue on Dynamic Games in Macroeconomics," Dynamic Games and Applications, Springer, vol. 6(2), pages 157-160, June.
    2. Amir, Rabah & Lazzati, Natalia, 2016. "Endogenous information acquisition in Bayesian games with strategic complementarities," Journal of Economic Theory, Elsevier, vol. 163(C), pages 684-698.
    3. Balbus, Łukasz & Reffett, Kevin & Woźny, Łukasz, 2018. "On uniqueness of time-consistent Markov policies for quasi-hyperbolic consumers under uncertainty," Journal of Economic Theory, Elsevier, vol. 176(C), pages 293-310.
    4. AMIR, Rabah, 2001. "Stochastic games in economics: the lattice-theoretic approach," LIDAM Discussion Papers CORE 2001059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Balbus, Łukasz & Jaśkiewicz, Anna & Nowak, Andrzej S., 2016. "Non-paternalistic intergenerational altruism revisited," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 27-33.
    6. Wozny Lukasz & Growiec Jakub, 2012. "Intergenerational Interactions in Human Capital Accumulation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 12(1), pages 1-47, June.
    7. Julio Dávila, 2023. "Bequests or education," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 75(4), pages 1039-1069, May.
    8. Balbus, Łukasz & Reffett, Kevin & Woźny, Łukasz, 2012. "Stationary Markovian equilibrium in altruistic stochastic OLG models with limited commitment," Journal of Mathematical Economics, Elsevier, vol. 48(2), pages 115-132.
    9. Łukasz Balbus & Anna Jaśkiewicz & Andrzej S. Nowak, 2015. "Existence of Stationary Markov Perfect Equilibria in Stochastic Altruistic Growth Economies," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 295-315, April.
    10. Ricardo Josa-Fombellida & Juan Rincón-Zapatero, 2015. "Euler–Lagrange equations of stochastic differential games: application to a game of a productive asset," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(1), pages 61-108, May.
    11. Łukasz Balbus & Kevin Reffett & Łukasz Woźny, 2013. "Markov Stationary Equilibria in Stochastic Supermodular Games with Imperfect Private and Public Information," Dynamic Games and Applications, Springer, vol. 3(2), pages 187-206, June.
    12. He, Wei & Sun, Yeneng, 2020. "Dynamic games with (almost) perfect information," Theoretical Economics, Econometric Society, vol. 15(2), May.
    13. Jaśkiewicz, Anna & Nowak, Andrzej S., 2014. "Stationary Markov perfect equilibria in risk sensitive stochastic overlapping generations models," Journal of Economic Theory, Elsevier, vol. 151(C), pages 411-447.
    14. Łukasz Balbus & Kevin Reffett & Łukasz Woźny, 2015. "Time consistent Markov policies in dynamic economies with quasi-hyperbolic consumers," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(1), pages 83-112, February.
    15. Balbus, Łukasz & Reffett, Kevin & Woźny, Łukasz, 2013. "A constructive geometrical approach to the uniqueness of Markov stationary equilibrium in stochastic games of intergenerational altruism," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1019-1039.
    16. Arvaniti, Maria & Krishnamurthy, Chandra Kiran B. & Crépin, Anne-Sophie, 2023. "Time-consistent renewable resource management with present bias and regime shifts," Journal of Economic Behavior & Organization, Elsevier, vol. 207(C), pages 479-495.
    17. Amir, Rabah, 1997. "A new look at optimal growth under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 22(1), pages 67-86, November.
    18. Balbus, Łukasz & Jaśkiewicz, Anna & Nowak, Andrzej S., 2015. "Stochastic bequest games," Games and Economic Behavior, Elsevier, vol. 90(C), pages 247-256.

    More about this item

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:8:y:1996:i:2:p:367-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.