IDEAS home Printed from https://ideas.repec.org/a/spr/joecth/v22y2003i4p699-725.html
   My bibliography  Save this article

Core and Walrasian equilibria when agents' characteristics are extremely dispersed

Author

Listed:
  • Konrad Podczeck

Abstract

It is shown that core-Walras equivalence fails whenever the commodity space is a non-separable Banach space. The interpretation is that a large number of agents guarantees core-Walras equivalence only if there is actually a large number of agents relative to the size of the commodity space. Otherwise a large number of agents means that agents' characteristics may be extremely dispersed, so that the standard theory of perfect competition fails. Supplementing the core-Walras non-equivalence result, it is shown that in the framework of economies with weakly compact consumption sets – as developed by Khan and Yannelis (1991) – the core is always non-empty, even if consumption sets are non-separable. Copyright Springer-Verlag Berlin Heidelberg 2003

Suggested Citation

  • Konrad Podczeck, 2003. "Core and Walrasian equilibria when agents' characteristics are extremely dispersed," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 22(4), pages 699-725, November.
  • Handle: RePEc:spr:joecth:v:22:y:2003:i:4:p:699-725
    DOI: 10.1007/s00199-002-0354-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00199-002-0354-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00199-002-0354-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiuqiang Liu, 2022. "Equivalence of Competitive Equilibria, Fuzzy Cores, and Fuzzy Bargaining Sets in Finite Production Economies," Mathematics, MDPI, vol. 10(18), pages 1-16, September.
    2. Bhowmik, Anuj & Graziano, Maria Gabriella, 2015. "On Vind’s theorem for an economy with atoms and infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 56(C), pages 26-36.
    3. Nicholas Yannelis, 2009. "Debreu’s social equilibrium theorem with asymmetric information and a continuum of agents," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 419-432, February.
    4. Anuj Bhowmik & Jiling Cao, 2013. "On the core and Walrasian expectations equilibrium in infinite dimensional commodity spaces," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 53(3), pages 537-560, August.
    5. Bhowmik, Anuj & Cao, Jiling, 2013. "Robust efficiency in mixed economies with asymmetric information," Journal of Mathematical Economics, Elsevier, vol. 49(1), pages 49-57.
    6. Podczeck, K., 2005. "On core-Walras equivalence in Banach lattices," Journal of Mathematical Economics, Elsevier, vol. 41(6), pages 764-792, September.
    7. Achille Basile & Maria Gabriella Graziano & Ciro Tarantino, 2018. "Coalitional fairness with participation rates," Journal of Economics, Springer, vol. 123(2), pages 97-139, March.
    8. Podczeck, K., 2004. "On Core-Walras equivalence in Banach spaces when feasibility is defined by the Pettis integral," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 429-463, June.
    9. Evren, Özgür & Hüsseinov, Farhad, 2008. "Theorems on the core of an economy with infinitely many commodities and consumers," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1180-1196, December.
    10. Bhowmik, Anuj, 2013. "Edgeworth equilibria: separable and non-separable commodity spaces," MPRA Paper 46796, University Library of Munich, Germany.
    11. Niccolò Urbinati, 2023. "The Walrasian objection mechanism and Mas-Colell’s bargaining set in economies with many commodities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(1), pages 45-68, July.
    12. Michael Greinecker & Konrad Podczeck, 2016. "Edgeworth’s conjecture and the number of agents and commodities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 62(1), pages 93-130, June.
    13. Suzuki, Takashi, 2013. "Core and competitive equilibria of a coalitional exchange economy with infinite time horizon," Journal of Mathematical Economics, Elsevier, vol. 49(3), pages 234-244.
    14. Greinecker, Michael & Podczeck, Konrad, 2017. "Core equivalence with differentiated commodities," Journal of Mathematical Economics, Elsevier, vol. 73(C), pages 54-67.

    More about this item

    Keywords

    Keywords and Phrases: Non-separable commodity space; Measure space of agents; Core; Walrasian equilibrium; Core-Walras equivalence.; JEL Classification Numbers: C62; C71; D41; D50.;
    All these keywords.

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D41 - Microeconomics - - Market Structure, Pricing, and Design - - - Perfect Competition

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:22:y:2003:i:4:p:699-725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.