IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v90y2024i1d10.1007_s10898-024-01388-y.html
   My bibliography  Save this article

Optimality conditions and sensitivity analysis in parametric nonconvex minimax programming

Author

Listed:
  • D. T. V. An

    (Thai Nguyen University of Sciences)

  • N. H. Hung

    (Hanoi Pedagogical University 2, Xuan Hoa)

  • D. T. Ngoan

    (Hanoi University of Natural Resources and Environment)

  • N. V. Tuyen

    (Hanoi Pedagogical University 2, Xuan Hoa)

Abstract

In this paper, we perform optimality conditions and sensitivity analysis for parametric nonconvex minimax programming problems. Our aim is to study the necessary optimality conditions by using the Mordukhovich (limiting) subdifferential and to give upper estimations for the Mordukhovich subdifferential of the optimal value function in the problem under consideration. The optimality conditions and sensitivity analysis are obtained by using upper estimates for Mordukhovich subdifferentials of the maximum function. The results on optimality conditions are then applied to parametric multiobjective optimization problems. An example is given to illustrate our results.

Suggested Citation

  • D. T. V. An & N. H. Hung & D. T. Ngoan & N. V. Tuyen, 2024. "Optimality conditions and sensitivity analysis in parametric nonconvex minimax programming," Journal of Global Optimization, Springer, vol. 90(1), pages 53-72, September.
  • Handle: RePEc:spr:jglopt:v:90:y:2024:i:1:d:10.1007_s10898-024-01388-y
    DOI: 10.1007/s10898-024-01388-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01388-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01388-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duong Thi Viet An & Abderrahim Jourani, 2022. "Subdifferentials of the Marginal Functions in Parametric Convex Optimization via Intersection Formulas," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 82-96, January.
    2. Zhe Hong & Kwan Deok Bae & Do Sang Kim, 2022. "Minimax programming as a tool for studying robust multi-objective optimization problems," Annals of Operations Research, Springer, vol. 319(2), pages 1589-1606, December.
    3. Thai Doan Chuong & Do Sang Kim, 2017. "Nondifferentiable minimax programming problems with applications," Annals of Operations Research, Springer, vol. 251(1), pages 73-87, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thai Doan Chuong, 2021. "Optimality and duality in nonsmooth composite vector optimization and applications," Annals of Operations Research, Springer, vol. 296(1), pages 755-777, January.
    2. Zhe Hong & Kwan Deok Bae & Do Sang Kim, 2022. "Minimax programming as a tool for studying robust multi-objective optimization problems," Annals of Operations Research, Springer, vol. 319(2), pages 1589-1606, December.
    3. Henan Li & Zhe Hong & Do Sang Kim, 2024. "A Minimax-Program-Based Approach for Robust Fractional Multi-Objective Optimization," Mathematics, MDPI, vol. 12(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:90:y:2024:i:1:d:10.1007_s10898-024-01388-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.