IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i16p2475-d1453804.html
   My bibliography  Save this article

A Minimax-Program-Based Approach for Robust Fractional Multi-Objective Optimization

Author

Listed:
  • Henan Li

    (Academy for Advanced Interdisciplinary Studies, Northeast Normal University, Changchun 130024, China)

  • Zhe Hong

    (Department of Mathematics, Yanbian University, Yanji 133002, China)

  • Do Sang Kim

    (Department of Applied Mathematics, Pukyong Natinal University, Busan 48513, Republic of Korea)

Abstract

In this paper, by making use of some advanced tools from variational analysis and generalized differentiation, we establish necessary optimality conditions for a class of robust fractional minimax programming problems. Sufficient optimality conditions for the considered problem are also obtained by means of generalized convex functions. Additionally, we formulate a dual problem to the primal one and examine duality relations between them. In our results, by using the obtained results, we obtain necessary and sufficient optimality conditions for a class of robust fractional multi-objective optimization problems.

Suggested Citation

  • Henan Li & Zhe Hong & Do Sang Kim, 2024. "A Minimax-Program-Based Approach for Robust Fractional Multi-Objective Optimization," Mathematics, MDPI, vol. 12(16), pages 1-14, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2475-:d:1453804
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/16/2475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/16/2475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thai Doan Chuong & Do Sang Kim, 2016. "A class of nonsmooth fractional multiobjective optimization problems," Annals of Operations Research, Springer, vol. 244(2), pages 367-383, September.
    2. Hang-Chin Lai & Tone-Yau Huang, 2012. "Nondifferentiable minimax fractional programming in complex spaces with parametric duality," Journal of Global Optimization, Springer, vol. 53(2), pages 243-254, June.
    3. S. K. Mishra & N. G. Rueda, 2006. "Second-Order Duality for Nondifferentiable Minimax Programming Involving Generalized Type I Functions," Journal of Optimization Theory and Applications, Springer, vol. 130(3), pages 479-488, September.
    4. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    5. Thai Doan Chuong & Do Sang Kim, 2017. "Nondifferentiable minimax programming problems with applications," Annals of Operations Research, Springer, vol. 251(1), pages 73-87, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhe Hong & Kwan Deok Bae & Do Sang Kim, 2022. "Minimax programming as a tool for studying robust multi-objective optimization problems," Annals of Operations Research, Springer, vol. 319(2), pages 1589-1606, December.
    2. Thai Doan Chuong, 2021. "Optimality and duality in nonsmooth composite vector optimization and applications," Annals of Operations Research, Springer, vol. 296(1), pages 755-777, January.
    3. Thai Doan Chuong & Do Sang Kim, 2017. "Nondifferentiable minimax programming problems with applications," Annals of Operations Research, Springer, vol. 251(1), pages 73-87, April.
    4. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    5. Christina Büsing & Sigrid Knust & Xuan Thanh Le, 2018. "Trade-off between robustness and cost for a storage loading problem: rule-based scenario generation," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 339-365, December.
    6. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    7. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    8. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    9. Chuong, T.D. & Jeyakumar, V., 2017. "Convergent hierarchy of SDP relaxations for a class of semi-infinite convex polynomial programs and applications," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 381-399.
    10. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    11. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    12. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.
    13. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    14. Evers, L. & Dollevoet, T.A.B. & Barros, A.I. & Monsuur, H., 2011. "Robust UAV Mission Planning," Econometric Institute Research Papers EI 2011-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    16. J. Behnamian & Z. Gharabaghli, 2023. "Multi-objective outpatient scheduling in health centers considering resource constraints and service quality: a robust optimization approach," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-35, March.
    17. Mínguez, R. & García-Bertrand, R., 2016. "Robust transmission network expansion planning in energy systems: Improving computational performance," European Journal of Operational Research, Elsevier, vol. 248(1), pages 21-32.
    18. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    19. Xuejie Bai & Yankui Liu, 2016. "Robust optimization of supply chain network design in fuzzy decision system," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1131-1149, December.
    20. Giovanni Paolo Crespi & Davide Radi & Matteo Rocca, 2017. "Robust games: theory and application to a Cournot duopoly model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 177-198, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2475-:d:1453804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.